DOI QR코드

DOI QR Code

Gellan Gum as Immobilization Matrix for Production of Cyclosporin A

  • Survase, Shrikant A. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Annapure, Uday S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
  • Received : 2010.01.08
  • Accepted : 2010.04.12
  • Published : 2010.07.28

Abstract

This study explored the use of gellan gum as an immobilization matrix for the production of cyclosporin A (CyA) by immobilized spores and mycelia of Tolypocladium inflatum MTCC 557. Different carriers, such as gellan gum, sodium alginate, celite beads, and silica, were tested as immobilization carriers, along with the role of the carrier concentration, biomass weight, number of spore-inoculated beads, and repeated utilization of the immobilized fungus. The maximum CyA production was 274 mg/l when using gellan gum [1% (w/v)], and a mycelial weight of 7.5% (w/v) supported the maximum production of CyA. Additionally, the addition of a combination of $_L$-valine (6 g/l) and $_L$-leucine (5 g/l) after 48 h of fermentation produced 1,338 mg/l of CyA when using gellan gum. The immobilized mycelia beads were found to remain stable for four repetitive cycles, indicating their potential for semicontinuous CyA production.

Keywords

References

  1. Abdel-fattah, Y. R., H. El Enshasy, M. Anwar, H. Omar, E. Abolmagd, and R. A. Zahra. 2007. Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture J. Microbiol. Biotechnol. 17: 1930-1936.
  2. Agathos, S. N., J. W. Marshall, C. Maraiti, R. Parekh, and C. Moshosing. 1986. Physiological and genetic factors for process development of cyclosporin A fermentation. J. Ind. Microbiol. 1: 39-48. https://doi.org/10.1007/BF01569415
  3. Anisha, G. S. and P. Prema. 2008. Cell immobilization technique for the enhanced production of a-galactosidase by Streptomyces griseoloalbus. Bioresour. Technol. 99: 3325-3330. https://doi.org/10.1016/j.biortech.2007.08.023
  4. Bajaj, I. B., S. A. Survase, P. S. Saudagar, and R. S. Singhal. 2007. Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol. 45: 341-354.
  5. Baker, E. E., R. J. Prevoznak, S. W. Dew, and B. C. Buckland. 1984. Thienamycin production by Streptomyces catteleya cells immobilized in celite beads. Dev. Ind. Microbiol. 24: 467-474.
  6. Balakrishnan, K. and A. Pandey. 1996. Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800-803. https://doi.org/10.1007/s002530050765
  7. Bihari, V., P. Gosivani, S. Rizvi, S. Base, and V. Voratt. 1984. Studies on immobilized fungal spores for microbial transformation of steroids. 11a$\alpha$-Hydroxylation of progesterone with immobilized spores of A. ochraceus G8 on polyacrylamide gel and other matrix. Biotechnol. Bioeng. 25: 1403-1408.
  8. Chun, G. T. and S. N. Agathos. 1989. Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporin A production. J. Biotechnol. 9: 237-254. https://doi.org/10.1016/0168-1656(89)90001-1
  9. Chun, G. T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of T. inflatum. Biotechnol. Bioeng. 37: 256-265. https://doi.org/10.1002/bit.260370308
  10. Cinquin, C., G. Le Blay, I. Fliss, and C. Lacroix. 2004. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb. Ecol. 48: 128-138. https://doi.org/10.1007/s00248-003-2022-7
  11. Dreyfuss, M., E. Harri, H. Hofmann, H. Kobel, W. Pache, and H. Tscherter. 1976. Cyclosporin A and C. New metabolites from Trichoderma polysporum. Eur. J. Appl. Microbiol. 3: 125-133. https://doi.org/10.1007/BF00928431
  12. Ferrance, J. P. 2007. Gellan beads as a transparent media for protein immobilization and affinity capture. J. Chromatogr. A 1165: 86-92. https://doi.org/10.1016/j.chroma.2007.07.062
  13. Gbewonyo, K. and D. Wang. 1983. Confining mycelial growth to porous micro beads: A novel technique to alter the morphology of non-Newtonian culture. Biotechnol. Bioeng. 25: 967-983. https://doi.org/10.1002/bit.260250407
  14. Gilleta, F., C. Roisin, M. A. Fliniaux, A. Jacquin-Dubreuil, J. N. Barbotin, and J. E. Nava-Saucedo. 2000. Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enz. Microb. Technol. 26: 229-234. https://doi.org/10.1016/S0141-0229(99)00138-6
  15. Jal, P. K., S. Patel, and B. K. Mishra. 2004. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62: 1005-1028. https://doi.org/10.1016/j.talanta.2003.10.028
  16. Jones, A., D. N. Wood, T. Razniewska, G. M. Gaucher, and L. A. Behie. 1986. Continuous production of penicillin G by Penicillium chrysogenum cells immobilized on celite biocatalyst support particles. Can. J. Chem. Eng. 64: 547-552. https://doi.org/10.1002/cjce.5450640404
  17. Kahan, B. D. (ed.). 1984. Cyclosporin: Biological Activity and Clinical Applications. Crune & Straton Inc., Orlando.
  18. Kennedy, J. F. and J. M. S. Cabral. 1983. Immobilized living cells and their applications, pp. 189-280. In Chibata, I. and L. B. Wingard Jr. (eds.). Applied Biochemistry and Bioengineering. Academic Press, New York.
  19. Kubo, W., S. Miyazaki, and D. Attwood. 2003. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int. J. Pharm. 258: 55-64. https://doi.org/10.1016/S0378-5173(03)00163-7
  20. Lee, J. and S. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by T. inflatum. Biotechnol. Lett. 11: 77-82. https://doi.org/10.1007/BF01192178
  21. Lee, T. H., G. T. Chun, and Y. K. Chang. 1997. Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546-550. https://doi.org/10.1021/bp970069j
  22. Miyazaki, S., N. Kawasaki, W. Kubo, K. Endo, and D. Attwood. 2001. Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int. J. Pharm. 220: 161-168. https://doi.org/10.1016/S0378-5173(01)00669-X
  23. Nisha, A. K., S. Meinnanalakshmi, and K. Ramasamy. 2008. Comparative effect of amino acids in the production of cyclosporin by solid and submerged fermentations. Biotechnology 7: 205-208. https://doi.org/10.3923/biotech.2008.205.208
  24. Potumarthi, R., Ch. Subhakar, A. Pavani, and A. Jetty. 2008. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods Bioresour. Technol. 99: 1776-1786. https://doi.org/10.1016/j.biortech.2007.03.041
  25. Sallam, L. A. R., A. H. El-Refai, A. A. Hamdi, A. H. El-Minofi, and S. I. Abd-Elsalam. 2005. Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J. Gen. Appl. Microbiol. 51: 143-149. https://doi.org/10.2323/jgam.51.143
  26. Schlosser, D., S. Irrgang, and H. Schmander. 1993. Steroid hydroxylation with free and immobilized cells of Penicillium raistricki in the presence of B, cyclodextrin. Appl. Microbiol. Biotechnol. 39: 16-20.
  27. Schmuader, H., D. Shlosser, T. Gunther, A. Hattenbach, J. Sauerstien, F. Jungnickel, and M. Augesten. 1991. Application of immobilized cells on biotransformation of steroids. J. Basic Microbiol. 31: 453-477. https://doi.org/10.1002/jobm.3620310610
  28. Sekar, C. and K. Balaraman. 1998. Immobilization of the fungus Tolypocladium sp. for the production of cyclosporin A. Bioprocess Eng. 19: 281-283.
  29. Sun, W. and M. W. Griffiths. 2000. Survival of Bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food. Microbiol. 61: 17-25. https://doi.org/10.1016/S0168-1605(00)00327-5
  30. Survase, S. A., N. S. Shaligram, R. C. Pansuriya, U. S. Annapure, and R. S. Singhal. 2009. A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J. Microbiol. Biotechnol. 19: 462-467. https://doi.org/10.4014/jmb.0805.324
  31. Survase, S. A., U. S. Annapure, and R. S. Singhal. 2009. Statistical optimization of cyclosporin A production on a semisynthetic medium using Tolypocladium inflatum MTCC 557, Global J. Biotechnol. Biochem. 4: 184-192.
  32. Wang, X., Z. Gai, B. Yu, J. Feng, C. Xu, Y. Yuan, Z. Lin, and P. Xu. 2007. Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl. Environ. Microbiol. 73: 6421-6428. https://doi.org/10.1128/AEM.01051-07

Cited by

  1. Cyclosporin A - A review on fermentative production, downstream processing and pharmacological applications vol.29, pp.4, 2010, https://doi.org/10.1016/j.biotechadv.2011.03.004
  2. Feasibility study on microencapsulation of anaerobic Clostridium acetobutylicum ATCC 824 by emulsification method for application in biobutanol production vol.31, pp.5, 2014, https://doi.org/10.3109/02652048.2013.879928
  3. Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma‐irradiated Penicillium roqueforti vol.119, pp.1, 2010, https://doi.org/10.1111/jam.12828
  4. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M vol.40, pp.3, 2019, https://doi.org/10.1080/09593330.2017.1393015
  5. Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima vol.103, pp.21, 2010, https://doi.org/10.1007/s00253-019-10129-1
  6. Immobilization of Metanil Yellow Decolorizing Mixed Culture FN3 Using Gelling Gum as Matrix for Bioremediation Application vol.13, pp.1, 2021, https://doi.org/10.3390/su13010036