DOI QR코드

DOI QR Code

Complete Saccharification of Cellulose at High Temperature Using Endocellulase and ${\beta}$-Glucosidase from Pyrococcus sp.

  • Kim, Han-Woo (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Ishikawa, Kazuhiko (National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2009.12.11
  • Accepted : 2010.01.11
  • Published : 2010.05.28

Abstract

We investigated a potential for glucose production from cellulose material using two kinds of hyperthermophilic enzymes, endocellulase (EG) and beta-glucosidase (BGL). Two BGLs, from hyperthermophile Pyrococcus furiosus and mesophile Aspergillus aculeatus, were compared with P. horikoshii endocellulase (EGPh) for complete hydrolysis of cellulose. The combination reactions by each BGL enzyme and EGPh could produce only glucose without the other oligosaccharides from phosphoric acid swollen Avicel (PSA). The combination of both the hyperthermophilic cellulases, BGLPf and EGPh, will be adaptable to a high efficiency system to produce glucose at high temperature.

Keywords

References

  1. Ando, S., H. Ishida, Y. Kosugi, and K. Ishikawa. 2002. Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol. 68: 430-433. https://doi.org/10.1128/AEM.68.1.430-433.2002
  2. Baldrian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  3. Bauer, M. W., E. J. Bylina, R. V. Swanson, and R. M. Kelly. 1996. Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J. Biol. Chem. 271: 23749-23755. https://doi.org/10.1074/jbc.271.39.23749
  4. Bauer, M. W., L. E. Driskill, W. Callen, M. A. Snead, E. J. Mathur, and R. M. Kelly. 1999. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-$\dashrightarrow$),(1$\dashrightarrow$4)-beta-D-glucans and cellulose. J. Bacteriol. 181: 284-290.
  5. Bayer, E. A. and R. Lamed. 1992. The cellulose paradox: Pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3: 171-188. https://doi.org/10.1007/BF00129082
  6. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  7. Dashtban, M., H. Schraft, and W. Qin. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595.
  8. Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506-508. https://doi.org/10.1126/science.1121416
  9. Gill, S. C. and P. H. von Hippel. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319-326. https://doi.org/10.1016/0003-2697(89)90602-7
  10. Hiromi, K., Y. Takahashi, and S. Ono. 1963. Kinetics of hydrolytic reaction catalyzed by crystalline bacterial α-amylase; the influence of temperature. Bull. Chem. Soc. Jpn. 36: 563-569. https://doi.org/10.1246/bcsj.36.563
  11. Joshi, C. P. and S. D. Mansfield. 2007. The cellulose paradox - simple molecule, complex biosynthesis. Curr. Opin. Plant Biol. 10: 220-226. https://doi.org/10.1016/j.pbi.2007.04.013
  12. Kang, H. J., K. Uegaki, H. Fukada, and K. Ishikawa. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11: 251-256. https://doi.org/10.1007/s00792-006-0033-2
  13. Kashima, Y., K. Mori, H. Fukada, and K. Ishikawa. 2005. Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose. Extremophiles 9: 37-43. https://doi.org/10.1007/s00792-004-0418-z
  14. Kawaguchi, T., T. Enoki, S. Tsurumaki, J. Sumitani, M. Ueda, T. Ooi, and M. Arai. 1996. Cloning and sequencing of the cDNA encoding beta-glucosidase 1 from Aspergillus aculeatus. Gene 173: 287-288. https://doi.org/10.1016/0378-1119(96)00179-5
  15. Kim, H. W., K. Mino, and K. Ishikawa. 2008. Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64: 1169-1171. https://doi.org/10.1107/S1744309108036919
  16. Kim, H. W., Y. Takagi, Y. Hagihara, and K. Ishikawa. 2007. Analysis of the putative substrate binding region of hyperthermophilic endoglucanase from Pyrococcus horikoshii. Biosci. Biotechnol. Biochem. 71: 2585-2587. https://doi.org/10.1271/bbb.70322
  17. Lebbink, J. H., T. Kaper, S. W. Kengen, J. van der Oost, and W. M. de Vos. 2001. beta-Glucosidase CelB from Pyrococcus furiosus: Production by Escherichia coli, purification, and in vitro evolution. Methods Enzymol. 330: 364-379. https://doi.org/10.1016/S0076-6879(01)30389-0
  18. Martinez, D., J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll, C. P. Kubicek, et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. U.S.A. 106: 1954-1959. https://doi.org/10.1073/pnas.0809575106
  19. Matsui, I., Y. Sakai, E. Matsui, H. Kikuchi, Y. Kawarabayasi, and K. Honda. 2000. Novel substrate specificity of a membranebound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett. 467: 195-200. https://doi.org/10.1016/S0014-5793(00)01156-X
  20. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  21. Stricker, A. R., R. L. Mach, and L. H. de Graaff. 2008. Regulation of transcription of cellulases- and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211-220. https://doi.org/10.1007/s00253-007-1322-0
  22. Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
  23. Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
  24. Xie, G., D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter, P. Gilna, et al. 2007. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl. Environ. Microbiol. 73: 3536-3546. https://doi.org/10.1128/AEM.00225-07

Cited by

  1. Application of a water jet system to the pretreatment of cellulose vol.95, pp.12, 2011, https://doi.org/10.1002/bip.21686
  2. Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A vol.17, pp.6, 2010, https://doi.org/10.1007/s00792-013-0575-z
  3. Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steam‐pretreated spruce in high solids concentration vol.91, pp.6, 2016, https://doi.org/10.1002/jctb.4777
  4. Novel Hyperthermophilic Crenarchaeon Thermofilum adornatum sp. nov. Uses GH1, GH3, and Two Novel Glycosidases for Cellulose Hydrolysis vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.02972
  5. What we learn from extremophiles vol.6, pp.1, 2020, https://doi.org/10.1007/s40828-020-0103-6
  6. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology vol.11, pp.11, 2010, https://doi.org/10.3390/biom11111557