References
- Ando, S., H. Ishida, Y. Kosugi, and K. Ishikawa. 2002. Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol. 68: 430-433. https://doi.org/10.1128/AEM.68.1.430-433.2002
- Baldrian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
- Bauer, M. W., E. J. Bylina, R. V. Swanson, and R. M. Kelly. 1996. Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J. Biol. Chem. 271: 23749-23755. https://doi.org/10.1074/jbc.271.39.23749
-
Bauer, M. W., L. E. Driskill, W. Callen, M. A. Snead, E. J. Mathur, and R. M. Kelly. 1999. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-
$\dashrightarrow$ ),(1$\dashrightarrow$ 4)-beta-D-glucans and cellulose. J. Bacteriol. 181: 284-290. - Bayer, E. A. and R. Lamed. 1992. The cellulose paradox: Pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3: 171-188. https://doi.org/10.1007/BF00129082
- Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
- Dashtban, M., H. Schraft, and W. Qin. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595.
- Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506-508. https://doi.org/10.1126/science.1121416
- Gill, S. C. and P. H. von Hippel. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319-326. https://doi.org/10.1016/0003-2697(89)90602-7
- Hiromi, K., Y. Takahashi, and S. Ono. 1963. Kinetics of hydrolytic reaction catalyzed by crystalline bacterial α-amylase; the influence of temperature. Bull. Chem. Soc. Jpn. 36: 563-569. https://doi.org/10.1246/bcsj.36.563
- Joshi, C. P. and S. D. Mansfield. 2007. The cellulose paradox - simple molecule, complex biosynthesis. Curr. Opin. Plant Biol. 10: 220-226. https://doi.org/10.1016/j.pbi.2007.04.013
- Kang, H. J., K. Uegaki, H. Fukada, and K. Ishikawa. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11: 251-256. https://doi.org/10.1007/s00792-006-0033-2
- Kashima, Y., K. Mori, H. Fukada, and K. Ishikawa. 2005. Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose. Extremophiles 9: 37-43. https://doi.org/10.1007/s00792-004-0418-z
- Kawaguchi, T., T. Enoki, S. Tsurumaki, J. Sumitani, M. Ueda, T. Ooi, and M. Arai. 1996. Cloning and sequencing of the cDNA encoding beta-glucosidase 1 from Aspergillus aculeatus. Gene 173: 287-288. https://doi.org/10.1016/0378-1119(96)00179-5
- Kim, H. W., K. Mino, and K. Ishikawa. 2008. Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64: 1169-1171. https://doi.org/10.1107/S1744309108036919
- Kim, H. W., Y. Takagi, Y. Hagihara, and K. Ishikawa. 2007. Analysis of the putative substrate binding region of hyperthermophilic endoglucanase from Pyrococcus horikoshii. Biosci. Biotechnol. Biochem. 71: 2585-2587. https://doi.org/10.1271/bbb.70322
- Lebbink, J. H., T. Kaper, S. W. Kengen, J. van der Oost, and W. M. de Vos. 2001. beta-Glucosidase CelB from Pyrococcus furiosus: Production by Escherichia coli, purification, and in vitro evolution. Methods Enzymol. 330: 364-379. https://doi.org/10.1016/S0076-6879(01)30389-0
- Martinez, D., J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll, C. P. Kubicek, et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. U.S.A. 106: 1954-1959. https://doi.org/10.1073/pnas.0809575106
- Matsui, I., Y. Sakai, E. Matsui, H. Kikuchi, Y. Kawarabayasi, and K. Honda. 2000. Novel substrate specificity of a membranebound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett. 467: 195-200. https://doi.org/10.1016/S0014-5793(00)01156-X
- Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
- Stricker, A. R., R. L. Mach, and L. H. de Graaff. 2008. Regulation of transcription of cellulases- and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211-220. https://doi.org/10.1007/s00253-007-1322-0
- Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
- Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. https://doi.org/10.1038/nature06269
- Xie, G., D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter, P. Gilna, et al. 2007. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl. Environ. Microbiol. 73: 3536-3546. https://doi.org/10.1128/AEM.00225-07
Cited by
- Application of a water jet system to the pretreatment of cellulose vol.95, pp.12, 2011, https://doi.org/10.1002/bip.21686
- Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A vol.17, pp.6, 2010, https://doi.org/10.1007/s00792-013-0575-z
- Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steam‐pretreated spruce in high solids concentration vol.91, pp.6, 2016, https://doi.org/10.1002/jctb.4777
- Novel Hyperthermophilic Crenarchaeon Thermofilum adornatum sp. nov. Uses GH1, GH3, and Two Novel Glycosidases for Cellulose Hydrolysis vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.02972
- What we learn from extremophiles vol.6, pp.1, 2020, https://doi.org/10.1007/s40828-020-0103-6
- Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology vol.11, pp.11, 2010, https://doi.org/10.3390/biom11111557