DOI QR코드

DOI QR Code

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Received : 2009.10.10
  • Accepted : 2010.02.04
  • Published : 2010.05.28

Abstract

Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.

Keywords

References

  1. Arenskotter, M., D. Broker, and A. Steinbuchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
  2. Caballero-Mellado, J., J. Onofre-Lemus, P. Estrada-de los Santos, and L. Martinez-Aguilar. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73: 5308-5319. https://doi.org/10.1128/AEM.00324-07
  3. Chaintreuil, C., E. Giraud, Y. Prin, J. Lorquin, A. Ba, M. Gillis, P. De Lajudie, and B. Dreyfus. 2000. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl. Environ. Microbiol. 66: 5437-5447. https://doi.org/10.1128/AEM.66.12.5437-5447.2000
  4. Chen, B., X. Tang, Y. Zhu, and P. Christie. 2005. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: Potential for revegetation. Sci. China 48: 156-164.
  5. Chenier, M. R., D. Beaumier, R. Roy, B. T. Driscoll, J. R. Lawrence, and C. W. Greer. 2003. Impact of seasonal variations and nutrient inputs on the cycling of nitrogen and the degradation of hexadecane by replicated river biofilms. Appl. Environ. Microbiol. 69: 5170-5177. https://doi.org/10.1128/AEM.69.9.5170-5177.2003
  6. Costa, R., N. C. M. Gomes, E. Krogerrecklenfort, K. Opelt, G. Berg, and K. Smalla. 2007. Pseudomonas community structure and antagonistic potential in the rhizosphere: Insights gained by combining phylogenetic and functional gene-based analyses. Environ. Microbiol. 9: 2260-2273. https://doi.org/10.1111/j.1462-2920.2007.01340.x
  7. Demba Diallo, M., A. Willems, N. Vloemans, S. Cousin, T. T. Vandekerckhove, P. de Lajudie, et al. 2004. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the $N_2$-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ. Microbiol. 6: 400-415. https://doi.org/10.1111/j.1462-2920.2004.00577.x
  8. Escalante-Espinosa, M. E., E. Gallegos-Martynez, M. Favela- Torres, and E. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413. https://doi.org/10.1016/j.chemosphere.2004.10.034
  9. Finnerty, W. R. 1992. The biology and genetics of the genus Rhodococcus. Annu. Rev. Microbiol. 46: 193-218. https://doi.org/10.1146/annurev.mi.46.100192.001205
  10. Gerhardt, K. E., X. D. Huan, B. R. Glick, and B. M. Greenberg. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176: 20-30. https://doi.org/10.1016/j.plantsci.2008.09.014
  11. Holm, L. G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. 1977. The World's Worst Weeds: Distribution and Biology. University Press of Hawaii, Honolulu, Hawaii.
  12. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81: 139-147.
  13. Khan, M. S., A. Zaidi, P. A. Wani, and M. Oves. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 7: 1-19. https://doi.org/10.1007/s10311-008-0155-0
  14. Kilani, S., M. Ben Sghaier, I. Limem, I. Bouhlel, J. Boubaker, W. Bhouri, et al. 2008. In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Bioresour. Technol. 99: 9004-9008. https://doi.org/10.1016/j.biortech.2008.04.066
  15. Kirk, J. L., J. N. Klironomonos, H. Lee, and J. T. Trevors. 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ. Pollut. 133: 455-465. https://doi.org/10.1016/j.envpol.2004.06.002
  16. Kloepper, J. W. and M. N. Schroth. 1978. Plant growth promoting rhizobacteria on radishes. In: Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria, pp. 879-882. Angers, France.
  17. Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis, Ver. 1.0. The Pennsylvania State University, Philadelphia, U.S.A.
  18. Leung, K. T., K. Nandakumar, K. Sreekumari, H. Lee, and J. T. Trevors. 2007. Biodegradation and bioremediation of organic pollutants in soil, pp. 521-552. In J. D. van Elsas, J. Jansson, and J. T. Trevors (eds.). Modern Soil Microbiology, 2nd Ed. Taylor & Francis Group, CRC Press.
  19. Margelef, D. R. 1958. Information theory in ecology. Gen. Syst. 3: 36-71.
  20. Marin, M. M., T. H. M. Smits, J. B. van Beilen, and F. Rojo. 2001. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J. Bacteriol. 183: 4202-4209. https://doi.org/10.1128/JB.183.14.4202-4209.2001
  21. Martinez-Aguilar, L., R. Diaz, J. J. Pena-Cabriales, P. Estradade Los Santos, M. F. Dunn, and J. Caballero-Mellado. 2008. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl. Environ. Microbiol. 74: 4574-4579. https://doi.org/10.1128/AEM.00201-08
  22. Merkl, N., R. Schultze-Kraft, and M. Arias. 2006. Effect of the tropical grass Brachiaria brizantha (Hochst. Ex. A. Rich) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol. Res. 161: 80-91. https://doi.org/10.1016/j.micres.2005.06.005
  23. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rDNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643. https://doi.org/10.1128/jb.178.19.5636-5643.1996
  24. Pastre, W. 2006. Controle de tiririca (Cyperus rotundus) com aplicacao de sulfentrazone e flazasulfuron aplicados isoladamente e em mistura na cultura de cana-de-acucar. 2006. Master of Science Thesis (Mestrado em Agricultura Tropical e Subtropical). IAC, Instituto Agronomico, Campinas, SP, Brazil.
  25. Phillips, L. A., C. W. Greer, and J. J. Germida. 2006. Culturebased and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol. Biochem. 38: 2823-2833. https://doi.org/10.1016/j.soilbio.2006.04.038
  26. Philp, J. C., A. S. Whiteley, L. Ciric, and M. J. Bailey. 2005. Monitoring bioremediation, pp. 237-268. In R. M. Atlas and J. C. Philp (eds.). Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup. ASM Press, Washington, DC.
  27. Pileou, E. C. 1969. Association tests versus homogeneity tests: Their use in subdividing quadrats into groups. Vegetation 18: 4-18. https://doi.org/10.1007/BF00332826
  28. Pilon-Smits, E. 2005. Phytoremediation. Annu. Rev. Plant Biol. 56: 15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
  29. Pires, F. R., C. M. Souza, A. A. Silva, S. O. Procopio, and L. R. Ferreira. 2003. Phytoremediation of herbicide-polluted soils. Planta Daninha 21: 335-341. https://doi.org/10.1590/S0100-83582003000200020
  30. Pitcher, D. G., N. A. Saunders, and R. J. Owen. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8: 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  31. Poly, F., L. J. Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152: 95-103. https://doi.org/10.1016/S0923-2508(00)01172-4
  32. Prantera, M. T., A. Drozdowicz, S. G. Leite, and A. S. Rosado. 2002. Degradation of gasoline aromatic hydrocarbons by two $N_2$-fixing soil bacteria. Biotechnol. Lett. 24: 85-89. https://doi.org/10.1023/A:1013875431825
  33. Quatrini, P., G. Scaglione, C. De Pasquale, S. Riela, and A. M. Puglia. 2008. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. Appl. Microbiol. 104: 251-259.
  34. Saleh-Lakha, S. and B. R. Glick. 2007. Plant growth-promoting bacteria, pp. 521-552. In J. D. van Elsas, J. Jansson, and J. T. Trevors (eds.). Modern Soil Microbiology, 2nd Ed. Taylor & Francis Group, CRC Press.
  35. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  36. Seldin, L., J. D. van Elsas, and E. G. C. Penido. 1984. Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34: 451-456. https://doi.org/10.1099/00207713-34-4-451
  37. Siciliano, S. D., J. J. Germida, K. Banks, and C. W. Greer. 2003. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl. Environ. Microbiol. 69: 483-489.
  38. Simonet, P., M. C. Grojean, A. K. Misra, S. Nazaret, B. Cournoyer, and P. Normand. 1991. Frankia genus-specific characterization by polymerase chain reaction. Appl. Environ. Microbiol. 57: 3278-3286.
  39. Singleton, D. R., M. A. Furlong, S. L. Rathbun, and W. B. Whitman. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 67: 4374-4376. https://doi.org/10.1128/AEM.67.9.4374-4376.2001
  40. Suominen, L., M. M. Jussila, K. Mäkeläinen, M. Romantschuk, and K. Lindström. 2000. Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ. Pollut. 107: 239-244. https://doi.org/10.1016/S0269-7491(99)00143-8
  41. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  42. Toccalino, P. L., R. L. Johnson, and D. R. Boone. 1993. Nitrogen limitation and nitrogen fixation during alkane biodegradation in a sandy soil. Appl. Environ. Microbiol. 59: 2977-2983.
  43. van Beilen, J. B., T. H. Smits, L. G. Whyte, S. Schorcht, M, Rothlisberger, T, Plaggemeier, K. H. Engesser, and B. Witholt. 2002. Alkane hydroxylase homologues in Gram-positive strains. Environ. Microbiol. 4: 676-682. https://doi.org/10.1046/j.1462-2920.2002.00355.x
  44. van Beilen, J. B., Z. Li, W. A. Duetz, T. H. M. Smits, and B. Witholt. 2003. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol. 58: 427-440. https://doi.org/10.2516/ogst:2003026
  45. Vomberg, A. and U. Klinner. 2000. Distribution of alkB genes within n-alkane-degrading bacteria. J. Appl. Microbiol. 89: 339-348. https://doi.org/10.1046/j.1365-2672.2000.01121.x
  46. von der Weid, I., G. F. Duarte, J. D. van Elsas, and L. Seldin. 2002. Paenibacillus brasilensis sp. nov., a new nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52: 2147-2153. https://doi.org/10.1099/ijs.0.02272-0
  47. Wenzel, W. W. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321: 385-408. https://doi.org/10.1007/s11104-008-9686-1
  48. White, P. M., D. C. Wolf, G. J. Thoma, and C. M. Reynolds. 2006. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut. 169: 207-220. https://doi.org/10.1007/s11270-006-2194-0
  49. Yoshida, N., K. Yagi, D. Sato, N, Watanabe, T. Kuroishi, K. Nishimoto, et al. 2005. Bacterial communities in petroleum oil in stockpiles. J. Biosci. Bioeng. 99: 143-149. https://doi.org/10.1263/jbb.99.143

Cited by

  1. Enhancing the Conversion of Organic Waste into Biofertilizer with Thermophilic Bacteria vol.29, pp.7, 2010, https://doi.org/10.1089/ees.2011.0169
  2. Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease vol.6, pp.5, 2010, https://doi.org/10.1371/journal.pntd.0001631
  3. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil vol.421, pp.None, 2010, https://doi.org/10.1016/j.scitotenv.2012.01.043
  4. Distribution of alkane-degrading bacterial communities in soils from King George Island, Maritime Antarctic vol.51, pp.None, 2010, https://doi.org/10.1016/j.ejsobi.2012.03.006
  5. Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area vol.58, pp.6, 2010, https://doi.org/10.1007/s12223-013-0248-4
  6. Chryseolinea serpens gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil vol.63, pp.2, 2010, https://doi.org/10.1099/ijs.0.039404-0
  7. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems vol.103, pp.3, 2013, https://doi.org/10.1007/s10482-012-9843-7
  8. Tolerance of Selected Plant Species to Petrogenic Hydrocarbons and Effect of Plant Rhizosphere on the Microbial Removal of Hydrocarbons in Contaminated Soil vol.224, pp.4, 2010, https://doi.org/10.1007/s11270-013-1495-3
  9. Association of Growth Substrates and Bacterial Genera with Benzo[a]pyrene Mineralization in Contaminated Soil vol.31, pp.12, 2010, https://doi.org/10.1089/ees.2014.0275
  10. Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems vol.225, pp.2, 2014, https://doi.org/10.1007/s11270-014-1871-7
  11. From oil spills to barley growth – oil‐degrading soil bacteria and their promoting effects vol.56, pp.11, 2010, https://doi.org/10.1002/jobm.201600300
  12. Salix integra Combined with Pseudomonas aeruginosa to Restore Diesel Contaminated Soils vol.143, pp.9, 2010, https://doi.org/10.1061/(asce)ee.1943-7870.0001226
  13. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture vol.32, pp.1, 2022, https://doi.org/10.1016/s1002-0160(21)60058-9