DOI QR코드

DOI QR Code

Effects of Dissolved Oxygen on Fungal Morphology and Process Rheology During Fed-Batch Processing of Ganoderma lucidum

  • Fazenda, Mariana L. (Fermentation Centre, SIPBS, Royal College Building, University of Strathclyde) ;
  • Harvey, Linda M. (Fermentation Centre, SIPBS, Royal College Building, University of Strathclyde) ;
  • McNeil, Brian (Fermentation Centre, SIPBS, Royal College Building, University of Strathclyde)
  • Received : 2009.11.17
  • Accepted : 2009.12.28
  • Published : 2010.04.28

Abstract

Controlling the dissolved oxygen (DO) in the fed-batch culture of the medicinal mushroom Ganoderma lucidum led to a 2-fold increase of the maximum biomass productivity compared with uncontrolled DO conditions. By contrast, extracellular polysaccharide (EPS) production was two times higher under oxygen limitation (uncontrolled DO) than under increased oxygen availability (controlled DO). Morphologically, dispersed mycelium was predominant under controlled DO conditions, with highly branched hyphae, consistent with the enhanced culture growth noted under these conditions, whereas in the uncontrolled DO process mycelial clumps were the most common morphology throughout the culture. However, in both cultures, clamp connections were found. This is an exciting new finding, which widens the applicability of this basidiomycete in submerged fermentation. In rheological terms, broths demonstrated shear-thinning behavior with a yield stress under both DO conditions. The flow curves were best described by the Herschel-Bulkley model: flow index down to 0.6 and consistency coefficient up to 0.2 and 0.6 Pa $s^n$ in uncontrolled and controlled cultures DO, respectively. The pseudoplastic behavior was entirely due to the fungal biomass, and not to the presence of EPS (rheological analysis of the filtered broth showed Newtonian behavior). It is clear from this study that dissolved oxygen tension is a critical process parameter that distinctly influences G. lucidum morphology and rheology, affecting the overall performance of the process. This study contributes to an improved understanding of the process physiology of submerged fermentation of G. lucidum.

Keywords

References

  1. Bao, X. F., X. S. Wang, Q. Dong, J. N. Fang, and X. Y. Li. 2002. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175-181. https://doi.org/10.1016/S0031-9422(01)00450-2
  2. Barnes, H. A., J. F. Hutton, and K. Walters. 1989. An Introduction to Rheology. Elsevier Science Publishing Company, New York.
  3. Buchs, J. and B. Zoels. 2001. Evaluation of maximum to specific power consumption ratio in shaking bioreactors. J. Chem. Eng. Jpn 34: 647-653. https://doi.org/10.1252/jcej.34.647
  4. Carlile, M. J., S. C. Watkinson, and G. W. Gooday. 2001. The Fungi. Academic Press, London
  5. Doran, P. M. 1995. Bioprocess Engineering Principles. Elsevier Science and Technology, U.S.A.
  6. Fang, Q. H., Y. J. Tang, and J. J. Zhong. 2002. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem. 37: 1375-1379. https://doi.org/10.1016/S0032-9592(02)00017-1
  7. Fazenda, M. L. 2009. Submerged culture fermentation of the basidiomycete fungus Ganoderma lucidum for biomass formation. PhD Thesis, Strathclyde University, Glasgow.
  8. Fazenda, M. L., R. Seviour, B. McNeil, and L. M. Harvey. 2008. Submerged culture fermentation of "higher fungi": The macrofungi. Adv. Appl. Microbiol. 63: 33-103. https://doi.org/10.1016/S0065-2164(07)00002-0
  9. Gehrig, I., H. J. Bart, T. Anke, and R. Germerdonk. 1998. Influence of morphology and rheology on the production characteristics of the basidiomycete Cyathus striatus. Biotechnol Bioeng 59: 525-533. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<525::AID-BIT1>3.0.CO;2-C
  10. Hwang, H. J., S. W. Kim, C. P. Xu, J. W. Choi, and J. W. Yun. 2004. Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. J. Appl. Microbiol. 96: 1296-1305. https://doi.org/10.1111/j.1365-2672.2004.02271.x
  11. Lee, B. C., J. T. Bae, H. B. Pyo, T. B. Choe, S. W. Kim, H. J. Hwang, and J. W. Yun. 2004. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzym. Microb. Technol. 35: 369-376. https://doi.org/10.1016/j.enzmictec.2003.12.015
  12. Lee, K. M., S. Y. Lee, and H. Y. Lee. 1999. Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J. Biosci. Bioeng. 88: 646-650. https://doi.org/10.1016/S1389-1723(00)87094-2
  13. Li, Z. J., V. Shukla, A. P. Fordyce, A. G. Pedersen, K. S. Wenger, and M. R. Marten. 2000. Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol. Bioeng. 70: 300-312. https://doi.org/10.1002/1097-0290(20001105)70:3<300::AID-BIT7>3.0.CO;2-3
  14. Markl, H., R. Bronnenmeier, and B. Wittek. 1991. The resistance of microorganisms to hydrodynamic stress. Int. Chem. Eng. 31: 185-197.
  15. McNeil, B., D. R. Berry, L. R. Harvey, A. Grant, and S. White. 1998. Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol. Bioeng. 57: 297-305. https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<297::AID-BIT6>3.0.CO;2-C
  16. McNeil, B. and L. M. Harvey. 1993. Viscous fermentation products. Crit. Rev. Biotechnol. 13: 275-304. https://doi.org/10.3109/07388559309075699
  17. Metzner, A. B. and R. E. Otto. 1957. Agitation of non-Newtonian fluids. Am. Inst. Chem. Eng. J. 3: 3-10. https://doi.org/10.1002/aic.690030103
  18. Mishra, P., P. Srivastava, and S. Kundu. 2005. A comparative evaluation of oxygen mass transfer and broth viscosity using Cephalosporin-C production as a case strategy. World J. Microbiol. Biotechnol. 21: 525-530. https://doi.org/10.1007/s11274-004-3489-1
  19. Olsvik, E. S. and B. Kristiansen. 1992. Influence of oxygen-tension, biomass concentration, and specific growth-rate on the rheological properties of a filamentous fermentation broth. Biotechnol. Bioeng. 40: 1293-1299. https://doi.org/10.1002/bit.260401102
  20. Packer, H. L. and C. R. Thomas. 1990. Morphological measurements on filamentous microorganisms by fully automatic image analysis. Biotechnol. Bioeng. 35: 870-881. https://doi.org/10.1002/bit.260350904
  21. Park, E. Y., Y. Koike, K. Higashiyama, S. Fujikawa, and M. Okabe. 1999. Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J. Biosci. Bioeng. 88: 61-67. https://doi.org/10.1016/S1389-1723(99)80177-7
  22. Paterson, R. R. M. 2006. Ganoderma - A therapeutic fungal biofactory. Phytochemistry 67: 1985-2001. https://doi.org/10.1016/j.phytochem.2006.07.004
  23. Pollard, D. J., G. Hunt, T. K. Kirschner, and P. M. Salmon. 2002. Rheological characterization of a fungal fermentation for the production of pneumocandins. Bioprocess Biosyst. Eng. 24: 373-383. https://doi.org/10.1007/s004490100260
  24. Reyes, C., C. Pena, and E. Galindo. 2003. Reproducing shake flasks performance in stirred fermentors: Production of alginates by Azotobacter vinelandii. J. Biotechnol. 105: 189-198. https://doi.org/10.1016/S0168-1656(03)00186-X
  25. Sinha, J., J. T. Bae, J. P. Park, C. H. Song, and J. W. Yun. 2001. Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzym. Microb. Technol. 29: 392-399. https://doi.org/10.1016/S0141-0229(01)00418-5
  26. Stanbury, P. F. 1995. Principles of Fermentation Technology, 2nd Ed. Butterworth-Heinemann Publications, Oxford.
  27. Tang, Y. J., L. W. Zhu, H. M. Li, and D. S. Li. 2007. Submerged culture of mushrooms in bioreactors - Challenges, current state-of-the-art, and future prospects. Food Technol. Biotechnol. 45: 221-229.
  28. Wagner, R., D. A. Mitchell, G. L. Sassaki, and M. A. L. D. Amazonas. 2004. Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. J. Biotechnol. 114: 153-164. https://doi.org/10.1016/j.jbiotec.2004.06.013
  29. Wang, S. Y., M. L. Hsu, H. C. Hsu, C. H. Tzeng, S. S. Lee, M. S. Shiao, and C. K. Ho. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 70: 699-705. https://doi.org/10.1002/(SICI)1097-0215(19970317)70:6<699::AID-IJC12>3.0.CO;2-5
  30. Wongwicharn, A., B. McNeil, and L. M. Harvey. 1999. Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol. Bioeng. 65: 416-424. https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<416::AID-BIT6>3.0.CO;2-Z
  31. Yang, F. C. and C. B. Liau. 1998. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem. 33: 547-553. https://doi.org/10.1016/S0032-9592(98)00023-5
  32. Znidarsic, P. and A. Pavko. 2001. The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol. Biotechnol. 39: 237-252.

Cited by

  1. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749 vol.93, pp.1, 2010, https://doi.org/10.1007/s00253-011-3448-3
  2. Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis vol.41, pp.9, 2010, https://doi.org/10.1007/s10295-014-1473-9
  3. Effect of transport phenomena of Cladosporium cladosporioides on decolorization and chemical oxygen demand of distillery spent wash vol.12, pp.5, 2010, https://doi.org/10.1007/s13762-014-0520-4
  4. Control of Grifola frondosa Morphology by Agitation and Aeration for Improving Mycelia and Exo-Polymer Production vol.179, pp.3, 2010, https://doi.org/10.1007/s12010-016-2006-y
  5. Rheological characteristics of Ganoderma applanatum exoploysaccharides vol.10, pp.6, 2010, https://doi.org/10.5897/ajmr2015.7744
  6. Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum vol.26, pp.6, 2010, https://doi.org/10.4014/jmb.1510.10018
  7. The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production vol.11, pp.None, 2010, https://doi.org/10.1016/j.btre.2016.05.005
  8. The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes vol.102, pp.17, 2018, https://doi.org/10.1007/s00253-018-9194-z
  9. Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures vol.102, pp.18, 2010, https://doi.org/10.1007/s00253-018-9227-7
  10. Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa vol.21, pp.1, 2010, https://doi.org/10.1080/10942912.2018.1510838
  11. Exopolysaccharides from Basidiomycota: Formation, isolation and techno‐functional properties vol.18, pp.10, 2010, https://doi.org/10.1002/elsc.201800117
  12. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc vol.17, pp.None, 2010, https://doi.org/10.1186/s12934-017-0850-2
  13. Improvement of natamycin production by controlling the morphology of Streptomyces gilvosporeus Z8 with microparticle talc in seed preculture vol.96, pp.6, 2010, https://doi.org/10.1002/jctb.6668
  14. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives vol.4, pp.None, 2010, https://doi.org/10.1016/j.fufo.2021.100086