DOI QR코드

DOI QR Code

Optimization of Hydroxyl Radical Scavenging Activity of Exopolysaccharides from Inonotus obliquus in Submerged Fermentation Using Response Surface Methodology

  • Chen, Hui (School of Science, Zhejiang Sci-Tech University) ;
  • Xu, Xiangqun (School of Science, Zhejiang Sci-Tech University) ;
  • Zhu, Yang (TNO Quality of Life, Department of Bioscience)
  • Received : 2009.09.15
  • Accepted : 2009.12.18
  • Published : 2010.04.28

Abstract

The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different components of the medium. Corn flour, peptone, and $KH_2PO_4$ were important factors significantly affecting hydroxyl radical scavenging activity. These selected variables were subsequently optimized using path of steepest ascent (descent), a central composite design, and response surface analysis. The optimal medium composition was (% w/v): corn flour 5.30, peptone 0.32, $KH_2PO_4$ 0.26, $MgSO_4$ 0.02, and $CaCl_2$ 0.01. Under the optimal condition, the hydroxyl radical scavenging rate (49.4%) was much higher than that using either basal fermentation medium (10.2%) and single variable optimization of fermentation medium (35.5%). The main monosaccharides components of the RSM optimized polysaccharides are rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar proportion at 1.45%, 3.63%, 2.17%, 15.94%, 50.00%, and 26.81%.

Keywords

References

  1. Abe, J. and B. C. Berk. 1998. Reactive oxygen species as mediators of signal transduction in cardiovascular diseases. Trends Cardiovasc. Med. 8: 59-64. https://doi.org/10.1016/S1050-1738(97)00133-3
  2. Benhura, M. A. N. and C. Chidewe. 2002. Some properties of a polysaccharide preparation that is isolated from the fruit of Cordia abyssinica. Food Chem. 76: 343-347. https://doi.org/10.1016/S0308-8146(01)00282-5
  3. Bian, D., Z. Yang, and W. Fang. 2006. Advance in the study on characteristics of extracellular polysaccharides from Grifola frondosa. Mod. Food Sci. Technol. 22: 247-250.
  4. Busciglio, J. and B. A. Yankner. 1995. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons. Nature 378: 776-779. https://doi.org/10.1038/378776a0
  5. Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-625.
  6. Chandra, P. and P. S. Ohga. 2006. Submerged culture condition for mycelial yield and polysaccharides production by Lyophyllum decastes. Food Chem. 105: 641-646.
  7. Chang, Y. and J. Huang. 2002. Using of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb. Technol. 30: 889-894. https://doi.org/10.1016/S0141-0229(02)00037-6
  8. Chen, C., X. Xiang, Q. Gu, W. Zheng, and J. Wei. 2007. Submerged fermentation conditions for synthesis of extracellular polysaccharides by Inonotus obliquus. Chin. Trad. Herb Med. 38: 358-361.
  9. Christen, P. and M. Raimbault. 1991. Optimization of culture medium for aroma production by Ceratocystis jmbriuta. Biotechnol. Lett. 13: 521-526. https://doi.org/10.1007/BF01049211
  10. Cui, F. J., Y. Li, Z. H. Xu, H. Y. Xu, K. Sun, and W. Y. Tao. 2006. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technol. 87: 1209-1216.
  11. Cui, Y., D. Kim, and K. Park. 2005. Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96: 79-85. https://doi.org/10.1016/j.jep.2004.08.037
  12. De Meo, M., M. Laget, M. Phan-Tan-Luu, D. Mathieu, and G. Dumknil. 1985. Application of experimental designs for optimization of medium and culture conditions in fermentation. Bioscience 4: 99-102.
  13. Duttar, J. R. and P. K. Duttar. 2004. Optimization of culture parameter for extracellular polysaccharides production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem. 39: 2193-2198. https://doi.org/10.1016/j.procbio.2003.11.009
  14. Fan, L., A. T. Soccol, A. Pandey, and C. R. Soccol. 2007. Effect of nutritional and environmental conditions on the production of exo-polysaccharides of Agaricus brasilinsis by submerged fermentation and its antitumor activity. Food Sci. Technol. Int. 40: 30-35.
  15. Francis, F., A. Sabu, K. N. Madhavan, R. Sumitra, G. Sanjoy, and S. George. 2003. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae. Biochem. Eng. J. 15:107-115. https://doi.org/10.1016/S1369-703X(02)00192-4
  16. Gao, H. and W. Gu. 2007. Optimization of polysaccharides production from Agaricus brasiliensis by fermentation process. Biochem. Eng. J. 33: 202-210. https://doi.org/10.1016/j.bej.2006.10.022
  17. GEP, B. and W. KB. 1951. On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B 13: 1-45.
  18. He, J., X. Feng, Y. Liu, and B. Zhao. 2001. Three new triterpenoids from Fuscoporia oblique. J. Asian Nat. Prod. Res. 3: 55-61. https://doi.org/10.1080/10286020108042839
  19. He, Y. and T. Tan. 2006. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. J. Mol. Catal. B Enzym. 43: 9-14. https://doi.org/10.1016/j.molcatb.2006.02.018
  20. Jalc, D., P. Siroka, and Z. Ceresnakova. 1997. Effect of six species of white-rot basidiomycetes on the chemical position and rumen degradability of wheat straw. J. Gen. Appl. Microbiol. 43: 133-137. https://doi.org/10.2323/jgam.43.133
  21. Jiao, Y., Q. Chen, J. Zhou, H. Zhang, and H. Chen. 2008. Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. Food Sci. Technol. Int. 41: 1694-1700.
  22. Kim, Y. O., S. B. Han, and H. W. Lee. 2005. Immuno-stimulating effect of the endo-polysaccharides produced by submerged culture of Inonotus obliquus. Life Sci. 77: 2438-2456. https://doi.org/10.1016/j.lfs.2005.02.023
  23. Lindequist, U. and W. Julich. 2005. The pharmacology potential of mushrooms. eCAM 2: 285-299.
  24. Park, Y., J. Won, Y. Kim, J. Choi, H. Park, and K. Lee. 2005. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 101: 120-128. https://doi.org/10.1016/j.jep.2005.04.003
  25. Roseiro, J. C. 1992. Medium development for xanthan production. Process Biochem. 167-175. https://doi.org/10.1016/0032-9592(92)87005-2
  26. Shamtsyan, M., V. Konusova, Y. Maksimova, A. Goloshchev, A. Panchenko, A. Simbirtsev, N. Petrshchev, and N. Denisova. 2004. Immonomodulating and anti-tumor action of extracts of several mushrooms. J. Biotechnol. 113: 77-83. https://doi.org/10.1016/j.jbiotec.2004.04.034
  27. Shi, Y., X. Xu, and Y. Zhu. 2009. Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Appl. Microbiol. Biotech. 82: 921-927. https://doi.org/10.1007/s00253-009-1874-2
  28. Smirnoff, N. and Q. J. Cumbes. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060. https://doi.org/10.1016/0031-9422(89)80182-7
  29. Song, Y., J. Hui, W. Kou, R. Xin, F. Jia, N. Wang, F. Hu, H. Zhang, and H. Liu. 2008. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activity of polysaccharides. Curr. Microbiol. 57: 454-462. https://doi.org/10.1007/s00284-008-9233-6
  30. Tang, Y., L. Zhu, D. Li, Z. Mi, and H. Li. 2008. Significance of inoculation density and carbon source on the mycelial growth and tuber polysaccharides production by submerged fermentation of Chinese truffle tuber Sinense. Process Biochem. 43: 576-586. https://doi.org/10.1016/j.procbio.2008.01.021
  31. Tseng, Y., J. Yang, and J. Mau. 2008. Antioxidant properties of polysaccharides of Ganoderma. Food Chem. 107: 732-738. https://doi.org/10.1016/j.foodchem.2007.08.073
  32. Wang, Y. X. and Z. X. Lu. 2005. Optimization of processing parameters for the mycelial growth and extracellular polysaccharides production by Boletus spp. ACCC 50328. Process Biochem. 40: 1043-1051. https://doi.org/10.1016/j.procbio.2004.03.012
  33. Wang, Y. X. and Z. X. Lu. 2004. Statistical optimization of media for extracellular polysaccharides by Pholiota squarrosa (Pers. ex-Fr) Quel. As 5.245 under submerged cultivation. Biochem. Eng. J. 20: 39-47. https://doi.org/10.1016/j.bej.2004.04.004
  34. Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotech. 60: 258-274. https://doi.org/10.1007/s00253-002-1076-7
  35. Xu, C. P., S. W. Kim, H. J. Hwang, and J. W. Yun. 2002. Application of statistically based experimental designs for the optimization of exo-polysaccharides production by Cordyceps militaris NG3. Biotechnol. Appl. Biochem. 36: 127-131. https://doi.org/10.1042/BA20020032
  36. Xu, H., L. P. Sun, Y. Z. Shi, Y. H. Wu, B. Zhang, and D. Q. Zhao. 2008. Optimization of cultivation condition for extrcellular polysaccharides and mycelium biomass by Morchella exculenta As51620. Biochem. Eng. J. 39: 66-73. https://doi.org/10.1016/j.bej.2007.08.013
  37. Ye, F. T., X. J. Yan, J. L. Xu, and H. M. Chen. 2006. Determination of aldoses and ketoses by GC-MS using differential derivatisation. Phytochem. Anal. 17: 379-383. https://doi.org/10.1002/pca.928
  38. Zhao, H. Z., J. Wang, and Z. X. Lu. 2009. Optimization of process parameters of the Pholiotu squarrosa extracellular polysaccharids by Box-Behnken statistical design. Carbohydr. Polym. 77: 677-680. https://doi.org/10.1016/j.carbpol.2009.02.013
  39. Zheng, W., M. M. Zhang, Y. X. Zhao, Y. Wang, K. J. Miao, and Z. W. Wei. 2009. Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Biores. Technol. 100: 1327-1335. https://doi.org/10.1016/j.biortech.2008.05.002

Cited by

  1. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate vol.102, pp.11, 2010, https://doi.org/10.1016/j.biortech.2011.03.099
  2. Enhanced Carboxymethylcellulase Production by a Newly Isolated Marine Bacterium, Cellulophaga lytica LBH-14, Using Rice Bran vol.22, pp.10, 2010, https://doi.org/10.4014/jmb.1203.03009
  3. Utilization of lignocellulosic natural fiber (jute) components during a microbial polymer production vol.66, pp.1, 2010, https://doi.org/10.1016/j.matlet.2011.08.040
  4. Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium vol.134, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2012.03.121
  5. Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus vol.14, pp.3, 2010, https://doi.org/10.7314/apjcp.2013.14.3.1571
  6. Characterization and applications of cyclic β-(1,2)-glucan produced from R. meliloti vol.4, pp.22, 2010, https://doi.org/10.1039/c3ra47073c
  7. Increasing plasmid-based DNA vaccine construct (16 kb pSVK-HBVA) production in Escherichia coli XL10-Gold through optimization of media component vol.29, pp.1, 2015, https://doi.org/10.1080/13102818.2014.989103
  8. Ethanol extract of Innotus obliquus (Chaga mushroom) induces $G_1$ cell cycle arrest in HT-29 human colon cancer cells vol.9, pp.2, 2010, https://doi.org/10.4162/nrp.2015.9.2.111
  9. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
  10. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm vol.47, pp.7, 2010, https://doi.org/10.1080/10826068.2017.1315596
  11. Immunomodulating Activity of Crude Polysaccharide from Inonotus obliquus Sclerotia by Fractionation including MeOH Reflux vol.30, pp.1, 2017, https://doi.org/10.9799/ksfan.2017.30.1.096
  12. Preliminary Characterization and Bioactivities of Some Impatiens L. Water-Soluble Polysaccharides vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030631
  13. Rapid Evaluation and Optimization of Medium Components Governing Tryptophan Production by Pediococcus acidilactici TP-6 Isolated from Malaysian Food via Statistical Approaches vol.25, pp.4, 2010, https://doi.org/10.3390/molecules25040779
  14. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus vol.265, pp.None, 2010, https://doi.org/10.1016/j.jep.2020.113321
  15. Effect of extraction method on the chemical profiles and bioactivities of soybean hull polysaccharides vol.9, pp.11, 2010, https://doi.org/10.1002/fsn3.2483
  16. Improving crude protein and methionine production, selective lignin degradation and digestibility of wheat straw by Inonotus obliquus using response surface methodology vol.102, pp.3, 2010, https://doi.org/10.1002/jsfa.11451
  17. Characterization of antioxidant activity of exopolysaccharides from endophytic Lysinibacillus sphaericus Ya6 under osmotic stress conditions vol.113, pp.None, 2010, https://doi.org/10.1016/j.procbio.2021.12.023