DOI QR코드

DOI QR Code

Isolation and Characterization of Ethanol-Producing Schizosaccharomyces pombe CHFY0201

  • Choi, Gi-Wook (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD.) ;
  • Um, Hyun-Ju (Department of Microbiology, Chungbuk National University) ;
  • Kim, Mi-Na (Department of Microbiology, Chungbuk National University) ;
  • Kim, Yule (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD.) ;
  • Kang, Hyun-Woo (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD.) ;
  • Chung, Bong-Woo (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Kim, Yang-Hoon (Department of Microbiology, Chungbuk National University)
  • Received : 2009.10.01
  • Accepted : 2009.12.23
  • Published : 2010.04.28

Abstract

An ethanol-producing yeast strain, CHFY0201, was isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w/v) ethanol at $30^{\circ}C$. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1+2 regions, suggested that the CHFY0201 was a novel strain of Schizosaccharomyces pombe. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. pombe CHFY0201 in YPD media containing 9.5% total sugars were $0.59{\pm}0.01$ g/l/h and $88.4{\pm}0.91%$, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) powder in a 5-l lab-scale jar fermenter at $32^{\circ}C$ for 66 h with an agitation speed of 120 rpm. Under these conditions, S. pombe CHFY0201 yielded a final ethanol concentration of $72.1{\pm}0.27$ g/l and a theoretical yield of $82.7{\pm}1.52%$ at a maximum ethanol productivity of $1.16{\pm}0.07$ g/l/h. These results suggest that S. pombe CHFY0201 is a potential producer for industrial bioethanol production.

Keywords

References

  1. Amutha, R. and P. Gunasekaran. 2001. Production of ethanol from liquefied cassava starch using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J. Biosci. Bioeng. 92: 560-564. https://doi.org/10.1263/jbb.92.560
  2. Bai, F. W., W. A. Anderson, and Moo-Young M. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105. https://doi.org/10.1016/j.biotechadv.2007.09.002
  3. Barnett, J. A., R. W. Payne, and D. Yarrow. 2000. Yeast, pp. 678-679. In J. A. Barnett, R. W. Payne, and D. Yarrow (eds.). Characteristics and Identification. Cambridge University Press, U.K.
  4. Brauman, A., S. Keleke, M. Malonga, E. Miambi, and F. Ampe. 1996. Microbiological and biochemical characterization of cassava retting, a traditional lactic acid fermentation for foo-foo (cassava flour) production. Appl. Environ. Microbiol. 62: 2854-2858.
  5. Cock, J. H. 1982. Cassava: A basic energy source in the tropics. Science 19: 755-762.
  6. Crichton, P. G., C. Affourtit, and A. L. Moore. 2007. Identification of a mitochondrial alcohol dehydrogenase in Schizosaccharomyces pombe: New insights into energy metabolism. Biochem. J. 401: 459-464. https://doi.org/10.1042/BJ20061181
  7. Da Silva Filho, E. A., H. F. de Melo, D. F. Antunes, S. K. dos Santos, R. A. do Monte, D. A. Simoes, and M. A. de Morais Jr. 2005. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J. Ind. Microbiol. Biotechnol. 32: 481-486. https://doi.org/10.1007/s10295-005-0027-6
  8. Deshpande, V., H. Sivaraman, and M. Rao. 1983. Simultaneous saccharification and fermentation of cellulose to ethanol using Penicillium funiculosum cellulase and free or immobilized Saccharomyces uvarum cells. Biotechnol. Bioeng. 25: 1679-1684. https://doi.org/10.1002/bit.260250623
  9. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  10. Flores, C. L., C. Rodriguez, T. Petit, and C. Gancedo. 2000. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev. 24: 507-529.
  11. Ge, X. M., X. Q. Zhao, and F. W. Bai. 2005. Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol. Bioeng. 90: 523-531. https://doi.org/10.1002/bit.20391
  12. Hu, C. K., F. W. Bai, and L. J. An. 2003. Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by $Mg^{2+}$ via reduction in plasma membrane permeability. Biotechnol. Lett. 25: 1191-1194. https://doi.org/10.1023/A:1024583503274
  13. Humberto de Queiroz, J., J. L. Uribelarrea, and A. Pareilleux. 1993. Estimation of the energetic biomass yield and efficiency of oxidative phosphorylation in cell-recycle cultures of Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 39: 609-614. https://doi.org/10.1007/BF00205061
  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  15. Krishnan, M. S., F. Taylor, B. H. Davison, and N. P. Nghiem. 2000. Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors. Bioresour. Technol. 75: 99-105. https://doi.org/10.1016/S0960-8524(00)00047-X
  16. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  17. Limtong, S., C. Sringiewa, and W. Yongmanitchai. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
  18. Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642. https://doi.org/10.1007/s00253-005-0229-x
  19. Najafpour, G., H. Younesi, and Ku. I. K. Syahidah. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260. https://doi.org/10.1016/j.biortech.2003.09.009
  20. Nguyen, T. L., S. H. Gheewala, and S. Garivait. 2007. Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ. Sci. Technol. 1: 4135-4142.
  21. Pan, Y. C. and W. C. Lee. 2005. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol. Bioeng. 30: 797-804.
  22. Paolucci-Jeanjean, D., M. P. Belleville, N. Zakhia, and G. M. Rios. 2000. Kinetics of cassava starch hydrolysis with termamyl enzyme. Biotechnol. Bioeng. 68: 71-77. https://doi.org/10.1002/(SICI)1097-0290(20000405)68:1<71::AID-BIT8>3.0.CO;2-5
  23. Rhee, S. K., G. M. Lee, C. H. Kim, Z. Abidin, and M. H. Han. 1986. Simultaneous sago starch hydrolysis and ethanol production by Zymomonas mobilis and glucoamylase. Biotechnol. Bioeng. Symp. 17: 481-493.
  24. Roble, N. D., J. C. Ogbonna, and H. Tanaka. 2003. A novel circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol. Appl. Microbiol. Biotechnol. 60: 671-678.
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  26. Sree, N. K., M. Sridhar, K. Suresh, I. M. Banat, and L. V. Rao. 2000. Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour. Technol. 72: 43-46. https://doi.org/10.1016/S0960-8524(99)90097-4
  27. Swain, M. R., S. Kar, A. K. Sahoo, and R. C. Ray. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol. Res. 162: 93-98. https://doi.org/10.1016/j.micres.2006.01.009
  28. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  29. Ueda, S., C. T. Zenin, D. A. Monteiro, and Y. K. Park. 1981. Production of ethanol from raw cassava starch by a nonconventional fermentation method. Biotechnol. Bioeng. 23: 291-299. https://doi.org/10.1002/bit.260230205
  30. Ward, O. P. and A. Singh. 2002. Bioethanol technology: Developments and perspectives. Adv. Appl. Microbiol. 51: 53-80. https://doi.org/10.1016/S0065-2164(02)51001-7
  31. White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, U.S.A.
  32. Yarrow, D. 1998. Methods for the isolation, maintenance and identification of yeasts, pp. 77-100. In C. P. Kurtzman, and J. W. Fell (eds.). The Yeasts: A Taxonomic Study. Elsevier Science BV, Amsterdam, The Netherlands.

Cited by

  1. Yeasts in sustainable bioethanol production: A review vol.10, pp.None, 2017, https://doi.org/10.1016/j.bbrep.2017.03.003
  2. Robust microorganisms for biofuel and chemical production from municipal solid waste vol.19, pp.None, 2010, https://doi.org/10.1186/s12934-020-01325-0
  3. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives vol.290, pp.None, 2010, https://doi.org/10.1016/j.jenvman.2021.112627