DOI QR코드

DOI QR Code

Production of Glutaminase (E.C. 3.2.1.5) from Zygosaccharomyces rouxii in Solid-State Fermentation and Modeling the Growth of Z. rouxii Therein

  • Iyer, Padma (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
  • Received : 2009.03.25
  • Accepted : 2009.06.20
  • Published : 2010.04.28

Abstract

Glutaminase production in Zygosaccharomyces rouxii by solid-state fermentation (SSF) is detailed. Substrates screening showed best results with oatmeal (OM) and wheatbran (WB). Furthermore, a 1:1 combination of OM:WB gave 0.614 units/gds with artificial sea water as a moistening agent. Evaluation of additional carbon, nitrogen, amino acids, and minerals supplementation was done. A central composite design was employed to investigate the effects of four variables (viz., moisture content, glucose, corn steep liquor, and glutamine) on production. A 4-fold increase in enzyme production was obtained. Studies were undertaken to analyze the time-course model, the microbial growth, and nutrient utilization during SSF. A logistic equation ($R^2$=0.8973), describing the growth model of Z. rouxii, was obtained with maximum values of ${\mu}_m$ and $X_m$ at $0.326h^{-1}$ and 7.35% of dry matter weight loss, respectively. A goodfit model to describe utilization of total carbohydrate ($R^2$=0.9906) and nitrogen concentration ($R^2$=0.9869) with time was obtained. The model was used successfully to predict enzyme production ($R^2$=0.7950).

Keywords

References

  1. Curthoys, N. P. and R. F. Weiss. 1974. Regulation of renal ammoniagenesis - subcellular localization of rat kidney glutaminase isoenzymes. J. Biol. Chem. 249: 3261.
  2. Dahiya, N., R. Tewari, R. P. Tiwari, and G. S. Hoondal. 2005. Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design Curr. Microb. 51: 222. https://doi.org/10.1007/s00284-005-4520-y
  3. Erkan, H., S. Celik, B. Bilgi, and H. Koksel. 2006. A new approach for the utilization of barley in food products: Barley tarhana. Food Chem. 97: 12. https://doi.org/10.1016/j.foodchem.2005.03.018
  4. Ghose, T. K. 1987. Measurement of cellulose activities. Pure Appl. Chem. 59: 257. https://doi.org/10.1351/pac198759020257
  5. Han, B. and R. J. Nout. 2000. Effects of temperature, water activity and gas atmosphere on mycelial growth of tempe fungi Rhizopus microsporus var. microsporus and R. microsporus var. oligosporus. World J. Microb. Biotech. 16: 853. https://doi.org/10.1023/A:1008974621698
  6. Han, B., M. Yong, M. F. Rombouts, and M. J. Nout. 2003. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chem. 81: 27. https://doi.org/10.1016/S0308-8146(02)00347-3
  7. Holker, U., M. Hofer, and J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175. https://doi.org/10.1007/s00253-003-1504-3
  8. Iyer, P. and R. S. Singhal. 2008. Production of glutaminase (E.C.3.2.1.5) from Zygosaccharomyces rouxii: Statistical optimization using response surface methodology. Bioresour. Technol. 99: 4300. https://doi.org/10.1016/j.biortech.2007.08.076
  9. Kashyap, P., A. Sabu, A. Pandey, G. Szakacs, and C. R. Soccol. 2002. Extracellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem. 38: 307. https://doi.org/10.1016/S0032-9592(02)00060-2
  10. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265.
  11. Miller, G. L. 1972. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426.
  12. Mitchell, D. A. and O. F. von Meien. 2000. Mathematical modeling as a tool to investigate the design and operation of the Zymotis packed-bed bioreactor for solid-state fermentation. Biotechnol. Bioeng. 68: 127. https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<127::AID-BIT1>3.0.CO;2-K
  13. Mitchell, D. A., P. F. Greenfield, and H. W. Doelle. 1991. An empirical model of growth of Rhizopus oligosporus in solidstate fermentation. J. Ferment. Bioeng. 72: 224. https://doi.org/10.1016/0922-338X(91)90223-4
  14. Mitchell, D. A., A. Pandey, P. Sangsurasak, and N. Krieger. 1999. Scale-up strategies for packed-bed bioreactors for solidstate fermentation. Process Biochem. 35: 167. https://doi.org/10.1016/S0032-9592(99)00048-5
  15. Moriguchi, M., K. Sakai, R. Tateyama, Y. Furuta, and M. Wakayama. 1994. Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3. J. Ferment. Bioeng. 77: 621. https://doi.org/10.1016/0922-338X(94)90143-0
  16. Nigam, P. and T. Robinson. 2003. Bioreactor design for protein enrichment of agricultural residues by solid-state fermentation. Biochem. Eng. J. 13: 197. https://doi.org/10.1016/S1369-703X(02)00132-8
  17. Pandey, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13: 81. https://doi.org/10.1016/S1369-703X(02)00121-3
  18. Pandey, A., C. R. Soccol, and D. Mitchell. 2000. New developments in solid-state fermentation: I - bioprocesses and products. Process Biochem. 35: 1153. https://doi.org/10.1016/S0032-9592(00)00152-7
  19. Pandey, A., G. Szakacs, C. R. Soccol, A. Jose, Rodriguez-Leon, and V. T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresource Technol. 77: 203. https://doi.org/10.1016/S0960-8524(00)00139-5
  20. Park, Y., S. Kang, J. Lee, I. Hong, and W. Kim. 2002. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 58: 761. https://doi.org/10.1007/s00253-002-0965-0
  21. Prabhu, N. and M. Chandrasekaran. 1997. Impact of process parameters on L-glutaminase production by marine Vibrio costicola in solid state fermentation using polystyrene as an inert support. Process Biochem. 32: 285-289. https://doi.org/10.1016/S0032-9592(96)00083-0
  22. Roberts, J. 1976. Purification and properties of a highly antitumor glutaminase-aspariginase from Pseudomonas 7A. J. Biol. Chem. 251: 2119.
  23. Sabu, A., T. R. Keerthi, S. Rajeev Kumar, and M. Chandrasekaran. 2000. L-Glutaminase production by marine Beauveria sp. under solid state fermentation. Process Biochem. 35: 705. https://doi.org/10.1016/S0032-9592(99)00127-2
  24. Sangsurasak, P. and D. A. Mitchell. 1998. Validation of a model describing 2-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol. Bioeng. 60: 739. https://doi.org/10.1002/(SICI)1097-0290(19981220)60:6<739::AID-BIT10>3.0.CO;2-U
  25. Terebiznik, M. R. and A. M. R. Pilosof. 1999. Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol. Tech. 13: 215. https://doi.org/10.1023/A:1008948104079
  26. Weng, X. and J. Sun. 2006. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation. Biochem. Eng. J. 32: 226. https://doi.org/10.1016/j.bej.2006.10.007

Cited by

  1. Insights into Potent Therapeutical Antileukemic Agent L-glutaminase Enzyme Under Solid-state Fermentation: A Review vol.21, pp.3, 2010, https://doi.org/10.2174/1389200221666200421122147
  2. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology vol.37, pp.6, 2010, https://doi.org/10.1007/s11274-021-03066-7