참고문헌
- Azzazy, H. M. and W. E. Highsmith Jr. 2002. Phage display technology: Clinical applications and recent innovations. Clin. Biochem. 35: 425-445. https://doi.org/10.1016/S0009-9120(02)00343-0
- Cho, C. M., A. Mulchandani, and W. Chen. 2002. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl. Environ. Microbiol. 68: 2026-2030. https://doi.org/10.1128/AEM.68.4.2026-2030.2002
- Cirino, P. C. and F. H. Arnold. 2002. Protein engineering of oxygenases for biocatalysis. Curr. Opin. Chem. Biol. 6: 130-135. https://doi.org/10.1016/S1367-5931(02)00305-8
- Daugherty, P. S. 2007. Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17: 474-480. https://doi.org/10.1016/j.sbi.2007.07.004
- Glieder, A., E. T. Farinas, and F. H. Arnold. 2002. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135-1139. https://doi.org/10.1038/nbt744
- Guengerich, F. P. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366. https://doi.org/10.1038/nrd792
- Guengerich, F. P., E. M. Gillam, and T. Shimada. 1996. New applications of bacterial systems to problems in toxicology. Crit. Rev. Toxicol. 26: 551-583. https://doi.org/10.3109/10408449609037477
- Jeong, H., S. Yoo, and E. Kim. 2001. Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme Microb. Technol. 28: 155-160. https://doi.org/10.1016/S0141-0229(00)00315-X
- Jose, J., R. Bernhardt, and F. Hannemann. 2001. Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe-2S] cluster. Chembiochem 2: 695-701. https://doi.org/10.1002/1439-7633(20010903)2:9<695::AID-CBIC695>3.0.CO;2-S
- Jose, J., R. Bernhardt, and F. Hannemann. 2002. Cellular surface display of dimeric Adx and whole cell p450-mediated steroid synthesis on E. coli. J. Biotechnol. 95: 257-268. https://doi.org/10.1016/S0168-1656(02)00030-5
- Jung, H. C., J. M. Lebeault, and J. G. Pan. 1998. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580. https://doi.org/10.1038/nbt0698-576
- Jung, H. C., J. H. Park, S. H. Park, J. M. Lebeault, and J. G. Pan. 1998. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb. Technol. 22: 348-354. https://doi.org/10.1016/S0141-0229(97)00224-X
- Kim, D. H., T. Ahn, H. C. Jung, J. G. Pan, and C. H. Yun. 2009. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 37: 932-936. https://doi.org/10.1124/dmd.108.026484
- Kim, D. H., K. H. Kim, D. H. Kim, K. H. Liu, H. C. Jung, J. G. Pan, and C. H. Yun. 2008. Generation of human metabolites of 7-ethoxycoumarin by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 36: 2166-2170. https://doi.org/10.1124/dmd.108.021220
- Kim, Y. S., H. C. Jung, and J. G. Pan. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl. Environ. Microbiol. 66: 788-793. https://doi.org/10.1128/AEM.66.2.788-793.2000
- Lee, J. S., K. S. Shin, J. G. Pan, and C. J. Kim. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18: 645-648. https://doi.org/10.1038/76494
- Miles, J. S., A. W. Munro, B. N. Rospendowski, W. E. Smith, J. McKnight, and A. J. Thomson. 1992. Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem. J. 288 (Pt 2): 503-509.
- Kondo, A. and M. Ueda. 2004. Yeast cell-surface display - applications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40. https://doi.org/10.1007/s00253-003-1492-3
- Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
- Sambrook, J. and D. W. Russell. 2006. The Condensed Protocols from Molecular Cloning: A Laboratory Manual, pp. 60-62. Cold Spring Harbor Press Laboratory, Cold Spring Harbor, New York.
- Samuelson, P., E. Gunneriusson, P. A. Nygren, and S. Stahl. 2002. Display of proteins on bacteria. J. Biotechnol. 96: 129-154. https://doi.org/10.1016/S0168-1656(02)00043-3
- Schwaneberg, U., C. Schmidt-Dannert, J. Schmitt, and R. D. Schmid. 1999. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem. 269: 359-366. https://doi.org/10.1006/abio.1999.4047
- Wernerus, H. and S. Stahl. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40: 209-228. https://doi.org/10.1042/BA20040014
- Yim, S. K., H. C. Jung, J. G. Pan, H. S. Kang, T. Ahn, and C. H. Yun. 2006. Functional expression of mammalian NADPH-cytochrome P450 oxidoreductase on the cell surface of Escherichia coli. Protein Expr. Purif. 49: 292-298. https://doi.org/10.1016/j.pep.2006.05.013
- Yun, C. H., K. H. Kim, D. H. Kim, H. C. Jung, and J. G. Pan. 2007. The bacterial P450 BM3: A prototype for a biocatalyst with human P450 activities. Trends Biotechnol. 25: 289-298. https://doi.org/10.1016/j.tibtech.2007.05.003
피인용 문헌
- Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis vol.3, pp.4, 2011, https://doi.org/10.1039/c0mt00082e
- Cytochrome P450 Is Present in Both Ferrous and Ferric Forms in the Resting State within Intact Escherichia coli and Hepatocytes vol.286, pp.47, 2011, https://doi.org/10.1074/jbc.m111.300871
- P450BM3 (CYP102A1): connecting the dots vol.41, pp.3, 2012, https://doi.org/10.1039/c1cs15192d
- Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites vol.13, pp.12, 2010, https://doi.org/10.3390/ijms131215901
- Whole‐cell‐based CYP153A6‐catalyzed (S)‐limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL vol.110, pp.5, 2010, https://doi.org/10.1002/bit.24801
- Isolation of a Potential Anchoring Motif Based on Proteome Analysis of Escherichia coli and Its Use for Cell Surface Display vol.170, pp.4, 2013, https://doi.org/10.1007/s12010-013-0236-9
- Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2859-12-81
- Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification vol.42, pp.15, 2010, https://doi.org/10.1039/c3cs60011d
- Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application vol.98, pp.19, 2014, https://doi.org/10.1007/s00253-014-5897-y
- Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme vol.99, pp.11, 2010, https://doi.org/10.1007/s00253-014-6281-7
- Deciphering EGFP production via surface display and self-cleavage intein system in different hosts vol.55, pp.None, 2010, https://doi.org/10.1016/j.jtice.2015.03.036
- Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant vol.27, pp.4, 2016, https://doi.org/10.1021/acs.bioconjchem.6b00074
- A simplified process design for P450 driven hydroxylation based on surface displayed enzymes vol.113, pp.6, 2010, https://doi.org/10.1002/bit.25885
- Co-expression of active human cytochrome P450 1A2 and cytochrome P450 reductase on the cell surface of Escherichia coli vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-016-0427-5
- Current strategies for protein production and purification enabling membrane protein structural biology vol.94, pp.6, 2010, https://doi.org/10.1139/bcb-2015-0143
- Cell surface protein engineering for high-performance whole-cell catalysts vol.11, pp.1, 2010, https://doi.org/10.1007/s11705-017-1609-3
- Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins vol.6, pp.None, 2010, https://doi.org/10.1186/s40643-019-0248-6
- Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation vol.117, pp.2, 2010, https://doi.org/10.1002/bit.27214
- Regioselective Hydroxylation of Naringin Dihydrochalcone to Produce Neoeriocitrin Dihydrochalcone by CYP102A1 (BM3) Mutants vol.10, pp.8, 2010, https://doi.org/10.3390/catal10080823
- Surface Display of Complex Enzymes by in Situ SpyCatcher‐SpyTag Interaction vol.21, pp.15, 2010, https://doi.org/10.1002/cbic.202000102
- A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli vol.23, pp.2, 2010, https://doi.org/10.1002/cbic.202100472