DOI QR코드

DOI QR Code

Surface Display of Heme- and Diflavin-Containing Cytochrome P450 BM3 in Escherichia coli: A Whole-Cell Biocatalyst for Oxidation

  • Yim, Sung-Kun (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Dong-Hyun (School of Biological Sciences and Technology, Chonnam National University) ;
  • Jung, Heung-Chae (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Pan, Jae-Gu (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Hyung-Sik (School of Biological Sciences and Technology, Chonnam National University) ;
  • Ahn, Tae-Ho (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2009.10.03
  • Accepted : 2009.11.19
  • Published : 2010.04.28

Abstract

Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.

Keywords

References

  1. Azzazy, H. M. and W. E. Highsmith Jr. 2002. Phage display technology: Clinical applications and recent innovations. Clin. Biochem. 35: 425-445. https://doi.org/10.1016/S0009-9120(02)00343-0
  2. Cho, C. M., A. Mulchandani, and W. Chen. 2002. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl. Environ. Microbiol. 68: 2026-2030. https://doi.org/10.1128/AEM.68.4.2026-2030.2002
  3. Cirino, P. C. and F. H. Arnold. 2002. Protein engineering of oxygenases for biocatalysis. Curr. Opin. Chem. Biol. 6: 130-135. https://doi.org/10.1016/S1367-5931(02)00305-8
  4. Daugherty, P. S. 2007. Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17: 474-480. https://doi.org/10.1016/j.sbi.2007.07.004
  5. Glieder, A., E. T. Farinas, and F. H. Arnold. 2002. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135-1139. https://doi.org/10.1038/nbt744
  6. Guengerich, F. P. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1: 359-366. https://doi.org/10.1038/nrd792
  7. Guengerich, F. P., E. M. Gillam, and T. Shimada. 1996. New applications of bacterial systems to problems in toxicology. Crit. Rev. Toxicol. 26: 551-583. https://doi.org/10.3109/10408449609037477
  8. Jeong, H., S. Yoo, and E. Kim. 2001. Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme Microb. Technol. 28: 155-160. https://doi.org/10.1016/S0141-0229(00)00315-X
  9. Jose, J., R. Bernhardt, and F. Hannemann. 2001. Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe-2S] cluster. Chembiochem 2: 695-701. https://doi.org/10.1002/1439-7633(20010903)2:9<695::AID-CBIC695>3.0.CO;2-S
  10. Jose, J., R. Bernhardt, and F. Hannemann. 2002. Cellular surface display of dimeric Adx and whole cell p450-mediated steroid synthesis on E. coli. J. Biotechnol. 95: 257-268. https://doi.org/10.1016/S0168-1656(02)00030-5
  11. Jung, H. C., J. M. Lebeault, and J. G. Pan. 1998. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580. https://doi.org/10.1038/nbt0698-576
  12. Jung, H. C., J. H. Park, S. H. Park, J. M. Lebeault, and J. G. Pan. 1998. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb. Technol. 22: 348-354. https://doi.org/10.1016/S0141-0229(97)00224-X
  13. Kim, D. H., T. Ahn, H. C. Jung, J. G. Pan, and C. H. Yun. 2009. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 37: 932-936. https://doi.org/10.1124/dmd.108.026484
  14. Kim, D. H., K. H. Kim, D. H. Kim, K. H. Liu, H. C. Jung, J. G. Pan, and C. H. Yun. 2008. Generation of human metabolites of 7-ethoxycoumarin by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 36: 2166-2170. https://doi.org/10.1124/dmd.108.021220
  15. Kim, Y. S., H. C. Jung, and J. G. Pan. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl. Environ. Microbiol. 66: 788-793. https://doi.org/10.1128/AEM.66.2.788-793.2000
  16. Lee, J. S., K. S. Shin, J. G. Pan, and C. J. Kim. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18: 645-648. https://doi.org/10.1038/76494
  17. Miles, J. S., A. W. Munro, B. N. Rospendowski, W. E. Smith, J. McKnight, and A. J. Thomson. 1992. Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem. J. 288 (Pt 2): 503-509.
  18. Kondo, A. and M. Ueda. 2004. Yeast cell-surface display - applications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40. https://doi.org/10.1007/s00253-003-1492-3
  19. Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
  20. Sambrook, J. and D. W. Russell. 2006. The Condensed Protocols from Molecular Cloning: A Laboratory Manual, pp. 60-62. Cold Spring Harbor Press Laboratory, Cold Spring Harbor, New York.
  21. Samuelson, P., E. Gunneriusson, P. A. Nygren, and S. Stahl. 2002. Display of proteins on bacteria. J. Biotechnol. 96: 129-154. https://doi.org/10.1016/S0168-1656(02)00043-3
  22. Schwaneberg, U., C. Schmidt-Dannert, J. Schmitt, and R. D. Schmid. 1999. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem. 269: 359-366. https://doi.org/10.1006/abio.1999.4047
  23. Wernerus, H. and S. Stahl. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40: 209-228. https://doi.org/10.1042/BA20040014
  24. Yim, S. K., H. C. Jung, J. G. Pan, H. S. Kang, T. Ahn, and C. H. Yun. 2006. Functional expression of mammalian NADPH-cytochrome P450 oxidoreductase on the cell surface of Escherichia coli. Protein Expr. Purif. 49: 292-298. https://doi.org/10.1016/j.pep.2006.05.013
  25. Yun, C. H., K. H. Kim, D. H. Kim, H. C. Jung, and J. G. Pan. 2007. The bacterial P450 BM3: A prototype for a biocatalyst with human P450 activities. Trends Biotechnol. 25: 289-298. https://doi.org/10.1016/j.tibtech.2007.05.003

Cited by

  1. Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis vol.3, pp.4, 2011, https://doi.org/10.1039/c0mt00082e
  2. Cytochrome P450 Is Present in Both Ferrous and Ferric Forms in the Resting State within Intact Escherichia coli and Hepatocytes vol.286, pp.47, 2011, https://doi.org/10.1074/jbc.m111.300871
  3. P450BM3 (CYP102A1): connecting the dots vol.41, pp.3, 2012, https://doi.org/10.1039/c1cs15192d
  4. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites vol.13, pp.12, 2010, https://doi.org/10.3390/ijms131215901
  5. Whole‐cell‐based CYP153A6‐catalyzed (S)‐limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL vol.110, pp.5, 2010, https://doi.org/10.1002/bit.24801
  6. Isolation of a Potential Anchoring Motif Based on Proteome Analysis of Escherichia coli and Its Use for Cell Surface Display vol.170, pp.4, 2013, https://doi.org/10.1007/s12010-013-0236-9
  7. Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2859-12-81
  8. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification vol.42, pp.15, 2010, https://doi.org/10.1039/c3cs60011d
  9. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application vol.98, pp.19, 2014, https://doi.org/10.1007/s00253-014-5897-y
  10. Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme vol.99, pp.11, 2010, https://doi.org/10.1007/s00253-014-6281-7
  11. Deciphering EGFP production via surface display and self-cleavage intein system in different hosts vol.55, pp.None, 2010, https://doi.org/10.1016/j.jtice.2015.03.036
  12. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant vol.27, pp.4, 2016, https://doi.org/10.1021/acs.bioconjchem.6b00074
  13. A simplified process design for P450 driven hydroxylation based on surface displayed enzymes vol.113, pp.6, 2010, https://doi.org/10.1002/bit.25885
  14. Co-expression of active human cytochrome P450 1A2 and cytochrome P450 reductase on the cell surface of Escherichia coli vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-016-0427-5
  15. Current strategies for protein production and purification enabling membrane protein structural biology vol.94, pp.6, 2010, https://doi.org/10.1139/bcb-2015-0143
  16. Cell surface protein engineering for high-performance whole-cell catalysts vol.11, pp.1, 2010, https://doi.org/10.1007/s11705-017-1609-3
  17. Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins vol.6, pp.None, 2010, https://doi.org/10.1186/s40643-019-0248-6
  18. Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation vol.117, pp.2, 2010, https://doi.org/10.1002/bit.27214
  19. Regioselective Hydroxylation of Naringin Dihydrochalcone to Produce Neoeriocitrin Dihydrochalcone by CYP102A1 (BM3) Mutants vol.10, pp.8, 2010, https://doi.org/10.3390/catal10080823
  20. Surface Display of Complex Enzymes by in Situ SpyCatcher‐SpyTag Interaction vol.21, pp.15, 2010, https://doi.org/10.1002/cbic.202000102
  21. A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli vol.23, pp.2, 2010, https://doi.org/10.1002/cbic.202100472