DOI QR코드

DOI QR Code

Cloning, Expression, and Characterization of a Highly Active Alkaline Pectate Lyase from Alkaliphilic Bacillus sp. N16-5

  • Li, Gang (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Rao, Lang (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Xue, Yanfen (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Zhou, Cheng (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Zhang, Yun (National Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Ma, Yanhe (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences)
  • 투고 : 2009.11.14
  • 심사 : 2009.12.29
  • 발행 : 2010.04.28

초록

An alkaline pectate lyase, Bsp165PelA, was purified to homogeneity from the culture broth of alkaliphilic Bacillus sp. N16-5. The enzyme showed a specific activity as high as 1,000 U/mg and had optimum activity at pH 11.5 and $50^{\circ}C$. It was composed of a single polypeptide chain with a molecular mass of 42 kDa deduced from SDS-PAGE, and its isoelectric point was around pH 6.0. It could efficiently depolymerize polygalacturonate and pectin. Characterization of product formation revealed unsaturated digalacturonate and trigalacturonate as the main products. The pectate lyase gene (pelA) contained an open reading frame (ORF) of 1,089 bp, encoding a 36-amino acids signal peptide and a mature protein of 326 amino acids with a calculated molecular mass of 35.943 Da. The deduced amino acid sequence from the pelA ORF exhibited significant homology to those of known pectate lyases in polysaccharide lyase family 1. Some conserved active-site amino acids were found in the deduced amino acid sequence of Bsp165PelA. $Ca^{2+}$ was not required for activity on pectic substrates.

키워드

참고문헌

  1. Berensmeier, S., S. A. Singh, J. Meens, and K. Buchholz. 2004. Cloning of the pelA gene from Bacillus licheniformis 14A and biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase. Appl. Microbiol. Biotechnol. 64: 560-567. https://doi.org/10.1007/s00253-003-1446-9
  2. Blanco, P., C. Sieiro, and T. G. Villa. 1999. Production of pectic enzymes in yeasts. FEMS Microbiol. Lett. 175: 1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13595.x
  3. Bruhlmann, F. 1995. Purification and characterization of an extracellular pectate lyase from an Amycolata sp. Appl. Environ. Microbiol. 61: 3580-3585.
  4. Cao, J., Z. L. and S. Chen. 1992. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microb. Technol. 14: 1013-1016. https://doi.org/10.1016/0141-0229(92)90087-5
  5. Hatada, Y., T. Kobayashi, and S. Ito. 2001. Enzymatic properties of the highly thermophilic and alkaline pectate lyase Pel-4B from alkaliphilic Bacillus sp. strain P-4-N and the entire nucleotide and amino acid sequences. Extremophiles 5: 127-133. https://doi.org/10.1007/s007920100182
  6. Henrissat, B., S. E. Heffron, M. D. Yoder, S. E. Lietzke, and F. Jurnak. 1995. Functional implications of structure-based sequence alignment of proteins in the extracellular pectate lyase superfamily. Plant Physiol. 107: 963-976. https://doi.org/10.1104/pp.107.3.963
  7. Herron, S. R., R. D. Scavetta, M. Garrett, M. Legner, and F. Jurnak. 2003. Characterization and implications of $Ca^{2+}$ binding to pectate lyase C. J. Biol. Chem. 278: 12271-12277. https://doi.org/10.1074/jbc.M209306200
  8. Hoondal, G. S., R. P. Tiwari, R. Tewari, N. Dahiya, and Q. K. Beg. 2002. Microbial alkaline pectinases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 59: 409-418. https://doi.org/10.1007/s00253-002-1061-1
  9. Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric. Biol. Chem. 36: 1407-1414.
  10. Jayani, R. S., S. Saxena, and R. Gupta. 2005. Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026
  11. Kapoor, M., Q. K. Beg, B. Bhushan, K. Singh, K. S. Dadhich, and G. S. Hoondal. 2001. Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem. 36: 803-807. https://doi.org/10.1016/S0032-9592(00)00282-X
  12. Kapoor, M., Q. Khalil Beg, B. Bhushan, K. S. Dadhich, and G. S. Hoondal. 2000. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem. 36: 467-473. https://doi.org/10.1016/S0032-9592(00)00238-7
  13. Kashayp, D. R., P. K. Vohra, S. K. Soni, and R. Tewari. 2001. Degumming of buel (Grewia optiva) bast fibres by pectinolytic enzyme from Bacillus sp. DT7. Biotechnol. Lett. 23: 1297-1301. https://doi.org/10.1023/A:1010565205698
  14. Kashyap, D. R., P. K. Vohra, S. Chopra, and R. Tewari. 2001. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 77: 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8
  15. Kita, N., C. M. Boyd, M. R. Garrett, F. Jurnak, and N. T. Keen. 1996. Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity. J. Biol. Chem. 271: 26529-26535. https://doi.org/10.1074/jbc.271.43.26529
  16. Klug-Santner, B. G., W. Schnitzhofer, M. Vrsansk, J. Weber, P. B. Agrawal, V. A. Nierstrasz, and G. M. Guebitz. 2006. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J. Biotechnol. 121: 390-401. https://doi.org/10.1016/j.jbiotec.2005.07.019
  17. Kobayashi, T., Y. Hatada, N. Higaki, D. D. Lusterio, T. Ozawa, K. Koike, S. Kawai, and S. Ito. 1999. Enzymatic properties and deduced amino acid sequence of a high-alkaline pectate lyase from an alkaliphilic Bacillus isolate. Biochim. Biophys. Acta 1427: 145-154. https://doi.org/10.1016/S0304-4165(99)00017-3
  18. Kobayashi, T., Y. Hatada, A. Suzumatsu, K. Saeki, Y. Hakamada, and S. Ito. 2000. Highly alkaline pectate lyase Pel-4A from alkaliphilic Bacillus sp. strain P-4-N: Its catalytic properties and deduced amino acid sequence. Extremophiles 4: 377-383. https://doi.org/10.1007/s007920070008
  19. Kobayashi, T., N. Higaki, A. Suzumatsu, K. Sawada, H. Hagihara, S. Kawai, and S. Ito. 2001. Purification and properties of a high-molecular-weight, alkaline exopolygalacturonase from a strain of Bacillus. Enzyme Microb. Technol. 29: 70-75. https://doi.org/10.1016/S0141-0229(01)00355-6
  20. Laemmli, U. K., L. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  21. Lietzke, S. E., R. D. Scavetta, M. D. Yoder, and F. Jurnak. 1996. The refined three-dimensional structure of pectate lyase E from Erwinia chrysanthemi at 2.2 A resolution. Plant Physiol. 111: 73-92.
  22. Ma, Y., X. Tian, P. Zhou, and D. Wang. 1991. Production and some properties of alkaline $\beta$-mannanase [in Chinese]. Acta Microbiol. Sin. 31: 443-448.
  23. Ma, Y., Y. Xue, Y. Dou, Z. Xu, W. Tao, and P. Zhou. 2004. Characterization and gene cloning of a novel beta-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8: 447-454. https://doi.org/10.1007/s00792-004-0405-4
  24. Mayans, O., M. Scott, I. Connerton, T. Gravesen, J. Benen, J. Visser, R. Pickersgill, and J. Jenkins. 1997. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5: 677-689. https://doi.org/10.1016/S0969-2126(97)00222-0
  25. Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1-6. https://doi.org/10.1093/protein/10.1.1
  26. Pickersgill, R., J. Jenkins, G. Harris, W. Nasser, and J. Robert-Baudouy. 1994. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat. Struct. Biol. 1: 717-723. https://doi.org/10.1038/nsb1094-717
  27. Sambrook J, F. E. and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Press Cold Spring Harbor, NY.
  28. Sawada, K., A. Suzumatsu, T. Kobayashi, and S. Ito. 2001. Molecular cloning and sequencing of the gene encoding an exopolygalacturonase of a Bacillus isolate and properties of its recombinant enzyme. Biochim. Biophys. Acta 1568: 162-170. https://doi.org/10.1016/S0304-4165(01)00213-6
  29. Scavetta, R. D., S. R. Herron, A. T. Hotchkiss, N. Kita, N. T. Keen, J. A. Benen, H. C. Kester, J. Visser, and F. Jurnak. 1999. Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11: 1081-1092.
  30. Solbak, A. I., T. H. Richardson, R. T. McCann, K. A. Kline, F. Bartnek, G. Tomlinson, et al. 2005. Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J. Biol. Chem. 280: 9431-9438.
  31. Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, et al. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28: 4317-4331. https://doi.org/10.1093/nar/28.21.4317
  32. Tardy, F., W. Nasser, J. Robert-Baudouy, and N. Hugouvieux-Cotte-Pattat. 1997. Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: Enzyme characteristics and potential inhibitors. J. Bacteriol. 179: 2503-2511.
  33. Yadav, S., P. K. Yadav, D. Yadav, and K. D. S. Yadav. 2009. Pectin lyase: A review. Process Biochem. 44: 1-10. https://doi.org/10.1016/j.procbio.2008.09.012
  34. Yoder, M. D. and F. Jurnak. 1995. The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 Angstrom resolution (implications for an enzymatic mechanism). Plant Physiol. 107: 349-364.

피인용 문헌

  1. Protoplast Transformation of Recalcitrant Alkaliphilic Bacillus sp. with Methylated Plasmid DNA and a Developed Hard Agar Regeneration Medium vol.6, pp.11, 2010, https://doi.org/10.1371/journal.pone.0028148
  2. Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hyper vol.16, pp.2, 2010, https://doi.org/10.1007/s00792-012-0431-6
  3. The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber vol.13, pp.None, 2010, https://doi.org/10.1186/1472-6750-13-26
  4. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5 vol.8, pp.1, 2010, https://doi.org/10.1371/journal.pone.0054090
  5. Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli vol.14, pp.None, 2010, https://doi.org/10.1186/1472-6750-14-18
  6. Cloning, Expression and Characterization of a Novel Thermophilic Polygalacturonase from Caldicellulosiruptor bescii DSM 6725 vol.15, pp.4, 2014, https://doi.org/10.3390/ijms15045717
  7. Biochemical characteristics of an alkaline pectate lyase PelA from Volvariella volvacea: roles of the highly conserved N-glycosylation site in its secretion and activity vol.99, pp.8, 2010, https://doi.org/10.1007/s00253-014-6146-0
  8. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming vol.81, pp.17, 2010, https://doi.org/10.1128/aem.01017-15
  9. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming vol.101, pp.9, 2010, https://doi.org/10.1007/s00253-017-8110-2
  10. Ricin Super Family Carbohydrate Binding Module 13 Containing Pectate Lyase 1B from Bacillus licheniformis Display Hyper Thermal Stability vol.12, pp.2, 2010, https://doi.org/10.3923/ajb.2017.36.43
  11. Efficient Over-expression and Application of High-performance Pectin Lyase by Screening Aspergillus niger Pectin Lyase Gene Family vol.23, pp.6, 2018, https://doi.org/10.1007/s12257-018-0387-1
  12. Screening of a Novel Polysaccharide Lyase Family 10 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression and Characterization vol.23, pp.11, 2010, https://doi.org/10.3390/molecules23112774
  13. A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency vol.103, pp.13, 2010, https://doi.org/10.1007/s00253-019-09803-1
  14. Origins and features of pectate lyases and their applications in industry vol.104, pp.17, 2010, https://doi.org/10.1007/s00253-020-10769-8
  15. Pectinolytic lyases: a comprehensive review of sources, category, property, structure, and catalytic mechanism of pectate lyases and pectin lyases vol.8, pp.1, 2010, https://doi.org/10.1186/s40643-021-00432-z
  16. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0256562