미생물연료전지의 가축분뇨 처리 가능성 연구

Studies on a Feasibility of Swine Farm Wastewater Treatment using Microbial Fuel Cell

  • 장재경 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김세희 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 유영선 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 이성현 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김종구 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 강연구 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과) ;
  • 최정은 (농촌진흥청 국립농업과학원 농업공학부 에너지환경공학과)
  • Jang, Jae-Kyung (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kim, Se-Hee (National Institute of Agricultural Science, Rural Development Administration) ;
  • Ryou, Young-Sun (National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Sung-Hyoun (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kim, Jong-Gu (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kang, Young-Goo (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kim, Young-Hwa (National Institute of Agricultural Science, Rural Development Administration) ;
  • Choi, Jung-Eun (National Institute of Agricultural Science, Rural Development Administration)
  • 투고 : 2010.10.14
  • 심사 : 2010.11.24
  • 발행 : 2010.12.28

초록

본 연구는 미생물연료전지를 이용하여 액비를 처리하고 동시에 유용한 전기에너지 발생이 가능한지를 실험한 것이다. 탄소섬유전극(graphite felt)와 스테인레스 스틸망을 다른 비율로 충진한 single-chamber 미생물연료전지를 이용하였으며 탄소섬유전극보다 스테인레스망을 더 많이 충진한 미생물연료전지를 대조구(CMFC)로 하여 탄소섬유전극이 더 많이 충진된 미생물연료전지(SMFC)와 서로 비교하였다. 농화 배양이 끝난 후, SMFC로부터 발생되는 전류는 $3.167{\pm}80\;mg/L$ 의 액비를 공급할 때 18 mA가 안정적으로 발생되었다. 이때 최대 전력밀도와 전류밀도는 각각 $680\;mW/m^3$$3,770\;mA/m^3$이었으며, CMFC의 전력밀도와 전류밀도보다는 높았다. 화학적산소요구량(COD)는 SMFC와 CMFC에서 $3.718{\pm}80\;mg/L$에서 $865{\pm}21$$930{\pm}14\;mg/L$로 감소하여 각각 72.7%와 70.6%가 감소되었다. SMFC와 CMFC로부터 부유물질(SS)은 99% 이상이 감소되는 것을 확인하였다. 또한 SMFC의 암모니아성질소, 질산성질소, 그리고 인산염인과 같은 영향물질 농도의 변화도 각각 65.4%, 57.5%, 그리고 73.7%이 감소되었으며 CMFC의 경우도 거의 유사한 제거율을 보였다. 이들 결과로부터 저가 재료가 충진한 미생물 연료전지를 이용함으로써 경제적 효과를 기대할 수 있음은 물론 가축분뇨로부터 적지만 전기 에너지가 발생하는 것을 확인할 수 있었다.

In this study the feasibility of simultaneous electricity generation and treatment of swine farm wastewater using microbial fuel cells (MFCs) was examined. Two single-chamber MFCs containing an anode filled with different ratio of graphite felt and stainless-steel cross strip was used in all tests. The proportion of stainless-steel cross strip to graphite felt in the anode of control microbial fuel cell (CMFC) was higher than that of swine microbial fuel cell (SMFC) to reduce construction costs. SMFCs produced a stable current of 18 mA by swine wastewater with chemical oxygen demand (COD) of $3.167{\pm}80\;mg/L$ after enriched. The maximum power density and current density of SMFCs were $680\;mW/m^3$ and $3,770\;mA/m^3$, respectively. In the CMFC, power density and current density was lower than that of SMFC. CODs decreased by the SMFC and CMFC from $3.167{\pm}80$ to $865{\pm}21$ and $930{\pm}14\;mg/L$, achieving 72.7% and 70.6% COD removal, respectively. The suspended solid (SS) of both fuel cells was also reduced over 99% ($4,533{\pm}67$ to $24.0{\pm}6.0\;mg/L$). The concentration of nutritive salts, ${NH_4}^+$, ${NO_3}^-$, and ${PO_4}^{3-}$, dropped by 65.4%, 57.5%, and 73.7% by the SMFC, respectively. These results were similar with those of CMFC. These results show that the microbial fuel cells using electrode with mix stainless-steel cross strip and graphite felt can treat the swine wastewater simultaneously with an electricity generation from swine wastewater.

키워드

참고문헌

  1. Angenent, L., K. Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol,. 22: 477-485. https://doi.org/10.1016/j.tibtech.2004.07.001
  2. Cho, K. S. and H. W. Ryu. 2009. Biotechnology for the mitigation of methane emission from landfills. Kor. J. Microbiol. Biotechnol. 37: 293-305.
  3. Dumas, C., A. Mollica, D. Feron, R. Basseguy, L. Etcheverry, and A. Bergel. 2007. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode lmaterials. Electrochimica acta. 53: 468-473. https://doi.org/10.1016/j.electacta.2007.06.069
  4. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H.J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-324. https://doi.org/10.1016/S0956-5663(02)00110-0
  5. Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
  6. Jang, J. K., I. S. Chang, H. Moon, K. H. Kang, and B. H. Kim. 2006. Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotech. Bioeng. 95: 772-774. https://doi.org/10.1002/bit.20820
  7. Kim, J. R., J. Dec, M. A. Bruns, and B. E. Logan. 2008. Removal of odors from swine wastewater by using microbial fuel cells, Applied and Environmental Microbiology, 74: 2540-2543. https://doi.org/10.1128/AEM.02268-07
  8. Kim, J. R., Y. Zuo, J. M. Regan, and B. E. Logan. 2008. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater, Biotechnology Bioengineering, 99: 1120-1127. https://doi.org/10.1002/bit.21687
  9. Li, Zhongjian, X. Zhang, and L. Lei. 2008. Electricity production during the treatment of real electrophating wastewater containing $Cr^{6+}$ using microbial fuel cell. Process Biochemistry. 43: 1352-1358. https://doi.org/10.1016/j.procbio.2008.08.005
  10. Liu, H., R. Ramnarayanan, and B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285. https://doi.org/10.1021/es034923g
  11. Logan, B. E. B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192. https://doi.org/10.1021/es0605016
  12. Lovley, D. R. 2006. Bug juice: harvesting electricity with microorganisms. Nature. 4: 497-508.
  13. Min, B., J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cell. Water Research. 39: 4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
  14. Rabaey, K. and W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
  15. Zhao, F., N. Rahunen, J. R. Varcoe, A. Chandra, C. Avignone- Rossa, A. E. Thumser, and R. C. T. Slade. 2008. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci. Technol. 42: 4971-4976. https://doi.org/10.1021/es8003766
  16. 최규철, 권오억, 김동욱, 김용환, 박광하, 이우식, 이징연, 전세진, 정수경. 2006. 수질오염공정시험방법주해. 동화기술 p. 253-255.
  17. 이상복. 2007. 저농도(SCB) 액비 이용 벼 재배 기술, 작물과학원 호남연구소 p. 7-8.