Application of 16S rDNA PCR-RFLP Analysis for the Rapid Identification of Weissella Species

Weissella 속 유산균의 빠른 동정을 위한 16S rDNA PCR-RFLP 분석법의 적용

  • Lee, Myeong-Jae (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Cho, Kyeung-Hee (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 이명재 (경기대학교 식품생물공학과) ;
  • 조경희 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • Received : 2010.10.09
  • Accepted : 2010.11.26
  • Published : 2010.12.28

Abstract

A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis was applied to detect and identify ten Weissella spp. frequently found in kimchi. The previously reported genus-specific primers designed from 16S rDNA sequences of Weissella spp. were adopted but PCR was performed at the increased annealing temperature by $4^{\circ}C$. The sizes of amplified PCR products and restricted fragments produced by AluI, MseI, and BceAI endonucleases were well correspond with the expected sizes. W. kandleri, W. koreensis, W. confusa, W. minor, W. viridescens, W. cibaria, and W. soli were distinguished by AluI and MseI and W. hellenica and W. paramesenteroides were identified by BceAI. W. thailandensis was distinguished when restriction pattern of other species was compared but identified by the single use of MspI.

16S rDNA 특이적 PCR과 증폭산물의 제한효소 처리 후, 나타나는 단편의 크기를 분석하는 PCR-RFLP 분석법을 김치에서 빈번하게 검출되는 Weissella 속 균주 10종의 신속하고 정확한 동정에 적용하였다. Weissella 속 균주 16S rDNA의 특이적 증폭에는 기존에 보고된 PCR primer를 사용하였지만, annealing 온도는 기존의 조건보다 $4^{\circ}C$ 높게 설정한 $65^{\circ}C$에서 PCR을 수행하였다. 증폭산물은 예상크기인 727bp와 일치하였으며, 제한효소 AluI, MseI, BceAI의 처리를 통하여 나타난 단편의 크기는 제한효소 절단위치 분석으로부터 추정한 단편의 크기와 일치하였다. W. kandleri, W. koreensis, W. confusa, W. minor, W. viridescens, W. cibaria, W. soli는 제한효소 AluI과 MseI의 사용으로 구분이 가능하였으며, W. hellenica, W. paramesenteroides의 경우, BceAI을 사용하면 독립적인 구분이 가능하였다. W. thailandensis의 경우, 본 실험에서 사용한 제한효소 AluI, MseI, BceAI에 의해 독립적인 band 양상은 나타나지 않았지만 나머지 9종과의 절단 양상 비교를 통해 구분이 되었으며, 제한효소 MspI을 사용하면 신속하게 동정할 수 있다.

Keywords

References

  1. An, D.-J., K. Lew, and K.-P. Lee. 1999. Effects of adipic acid and storage temperature on extending the shelf life of kimchi. Food Sci. Biotechnol. 8: 78-82.
  2. Bae, J.-W., S.-K. Rhee, J. R. Park, W.-H. Chung, Y.-D. Nam, I. Lee, H. Kim, and Y.-H. Park. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71: 8825-8835. https://doi.org/10.1128/AEM.71.12.8825-8835.2005
  3. Berthier F. and S. D. Ehrlich. 1998. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16/23 rRNA spacer region. FEMS Microbiol. Lett. 161: 97-106. https://doi.org/10.1111/j.1574-6968.1998.tb12934.x
  4. Bruyne, K. D., N. Camu, K. Lefebvre, L. D. Vuyst, and P. Vandamme. 2008. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 58: 2721-2725. https://doi.org/10.1099/ijs.0.65853-0
  5. Chae, M.-H., E.-J. Park, T.-K. Oh, and D.-Y. Jhon. 2006. Preparation of kimchi containing Bifidobacterium longum BO-11. Korean J. Food Sci. Technol. 38: 232-236.
  6. Chin, H. S., F. Breidt, H. P. Fleming, W.-C. Shin, and S.-S. Yoon. 2006. Identifications of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16: 68-76.
  7. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262–267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
  8. Choi, H.-J., C.-I. Cheigh, S.-B. Kim, J.-C. Lee, D.-W. Lee, S.-W. Choi, J.-M. Park, and Y.-R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
  9. Choi, I.-K., S.-H. Jung, B.-J. Kim, S.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek 84: 247-253. https://doi.org/10.1023/A:1026050410724
  10. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  11. Ennahar, S. and Y. Cai. 2004. Genetic evidence that Weissella kimchii Choi et al. 2002 is a later heterotypic synonym of Weissella cibaria Bjorkroth et al. 2002. Int. J. Syst. Evol. Microbiol. 54: 463-465. https://doi.org/10.1099/ijs.0.02783-0
  12. Jang, J., B. Kim, J. Lee, J. Kim, G. Jeong, and H. Han. 2002. Identification of Weissella species by the genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol. Lett. 212: 29-34. https://doi.org/10.1111/j.1574-6968.2002.tb11240.x
  13. Jang, J., B. Kim, J. Lee, and H. Han. 2003. A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. J. Microbiol. Methods 55: 295-302. https://doi.org/10.1016/S0167-7012(03)00162-3
  14. Jin, H. S., J. B. Kim, Y. J. Yun, and K. J. Lee. 2008. Selection of kimchi starters based on the microbial composition of kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671-675. https://doi.org/10.3746/jkfn.2008.37.5.671
  15. Kim, B.-J., H.-J. Lee, S.-Y. Park, J. Kim, and H.-U. Han. 2000. Identification and characterization of Leuconostoc gelidum, isolated from kimchi, a fermented cabbage product. J. Microbiol. 38: 132-136.
  16. Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  17. Kim, T.-W., J.-Y. Lee, S.-H. Jung, Y.-M. Kim, J.-S. Jo, D.-K. Chung, H.-J. Lee, and H.-Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642.
  18. Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microfloral changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109.
  19. Lee, J.-H. 2009. Current studies on the community of lactic acid bacteria in kimchi, a traditional Korean fermented food. Milk Sci. 58: 153-159.
  20. Lee, J.-S., G.-Y. Heo, J. W. Lee, Y.-J. Oh, J. A. Park, Y.-H. Park, Y.-R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150. https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  21. Lee, J.-S., K. C. Lee, J.-S. Ahn, T.-I. Mheen, Y.-R. Pyun, and Y.-H. Park. 2002. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52: 1257-1261. https://doi.org/10.1099/ijs.0.02074-0
  22. Lee, M., K. H. Cho, E. S. Han, and J.-H. Lee. 2010. Bacterial diversity in the initial fermentation stage of Korean and Chinese kimchi. Korean J. Microbiol. Biotechnol. 38: 207-215.
  23. Lee, S.-H., N.-Y. Park, and W.-J. Choi. 1999. Changes of the lactic acid bacteria and selective inhibitory substances against homo and hetero lactic acid bacteria isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 27: 410-414.
  24. Lim C.-R., H.-K. Park, and H.-U. Han. 1989. Reevaluation of isolation and identification of Gram-positive bacteria in kimchi. Korean J. Microbiol. 27: 404-414.
  25. Magnusson, J., H. Jonsson, J. Schnurer, and S. Roos. 2002. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 52: 831-834. https://doi.org/10.1099/ijs.0.02015-0
  26. Mheen, T.-I. and T.-W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  27. Park, J. A., G.-Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, C. K. Kim, and J. S. Ahn. 2003. Change of microbial communities in kimchi fermentation at low temperature. Korean J. Microbiol. 39: 45-50.
  28. Shim, S. and J.-H. Lee. 2008. PCR-based detection of lactic acid bacteria in Korean fermented vegetables with recA gene targeted species-specific primers. Korean J. Microbiol. Biotechnol. 36: 96-100.
  29. Shim, S. and J.-H. Lee. 2008. Evaluation of Lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis. Korean J. Microbiol. Biotechnol. 36: 247-259.
  30. So, M.-H. and Y.-B. Kim. 1995. Identification of psychrotrophic lactic acid bacteria isolated from kimchi. Korean J. Food Sci. Technol. 27: 495-505.
  31. Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29. https://doi.org/10.1016/S0168-1605(96)01233-0
  32. Torriani, S., G. E. Felis, and F. Dellaglio. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67: 3450-3454. https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  33. Um, S., W.-S. Shin, and J.-H. Lee. 2006. Real-time PCR monitoring of Lactobacillus sake, Lactobacillus plantarum, and Lactobacillus paraplantarum during kimchi fermentation. Food Sci. Biotechnol. 15: 595-598.