Strain Improvement Based on Ion Beam-Induced Mutagenesis

이온빔을 이용한 미생물의 균주 개량

  • Jeong, Hae-Young (Industrial Biotechnology & Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Kye-Ryung (Proton Engineering Frontier Project, Korea Atomic Energy Research Institute (KAERI))
  • 정해영 (한국생명공학연구원 바이오화학/에너지연구센터) ;
  • 김계령 (한국원자력연구원 양성자기반공학기술개발사업단)
  • Received : 2010.07.21
  • Accepted : 2010.08.10
  • Published : 2010.09.28

Abstract

For decades, traditional mutation breeding technologies using spontaneous mutation, chemicals, or conventional radiation sources have contributed greatly to the improvement of crops and microorganisms of agricultural and industrial importance. However, new mutagens that can generate more diverse mutation spectra with minimal damage to the original organism are always in need. In this regard, ion beam irradiation, including proton-, helium-, and heavier-charged particle irradiation, is considered to be superior to traditional radiation mutagenesis. In particular, it has been suggested that ion beams predominantly produce strand breaks that often lead to mutations, which is not a situation frequently observed in mutagenesis induced by gamma-ray exposure. In this review, we briefly describe the general principles and history of particle accelerators, and then introduce their successful application in ion beam technology for the improvement of crops and microbes. In particular, a 100-MeV proton beam accelerator currently under construction by the Proton Engineering Frontier Project (PEFP) is discussed. The PEFP accelerator will hopefully prompt the utilization of ion beam technology for strain improvement, as well as for use in nuclear physics, medical science, biology, space technology, radiation technology and basic sciences.

Keywords

References

  1. FAO/IAEA Mutant Variety and Genetic Stock Database. http://mvgs.iaea.org/
  2. Buckling, A., R. Craig Maclean, M. A. Brockhurst, and N. Colegrave. 2009. The Beagle in a bottle. Nature 457: 824-829. https://doi.org/10.1038/nature07892
  3. Cairns, J., J. Overbaugh, and S. Miller. 1988. The origin of mutants. Nature 335: 142-145. https://doi.org/10.1038/335142a0
  4. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U S A 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  5. Edwards, J. S., R. U. Ibarra, and B. O. Palsson. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-130. https://doi.org/10.1038/84379
  6. Ellis, H. M., D. Yu, T. DiTizio, and D. L. Court. 2001. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. U S A 98: 6742-6746. https://doi.org/10.1073/pnas.121164898
  7. Fong, S. S., A. P. Burgard, C. D. Herring, E. M. Knight, F. R. Blattner, C. D. Maranas, and B. O. Palsson. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91: 643-648. https://doi.org/10.1002/bit.20542
  8. Friedland, W., P. Jacob, P. Bernhardt, H. G. Paretzke, and M. Dingfelder. 2003. Simulation of DNA damage after proton irradiation. Radiat. Res. 159: 401-410. https://doi.org/10.1667/0033-7587(2003)159[0401:SODDAP]2.0.CO;2
  9. Goodhead, D. T. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 65: 7-17. https://doi.org/10.1080/09553009414550021
  10. Gu, S. B., S. C. Li, H. Y. Feng, Y. Wu, and Z. L. Yu. 2008. A novel approach to microbial breeding-low-energy ion implantation. Appl. Microbiol. Biotechnol. 78: 201-209. https://doi.org/10.1007/s00253-007-1312-2
  11. Hada, M. and B. M. Sutherland. 2006. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res. 165: 223-230. https://doi.org/10.1667/RR3498.1
  12. Hada, M. and A. G. Georgakilas. 2008. Formation of clustered DNA damage after high-LET irradiation: a review. J. Radiat. Res. 49: 203-210. https://doi.org/10.1269/jrr.07123
  13. Hoebee, B., J. Brouwer, P. van de Putte, H. Loman, and J. Retel. 1988. $^{60}Co$ gamma-rays induce predominantly C/G to G/C transversions in double-stranded M13 DNA. Nucleic Acids Res. 16: 8147-8156. https://doi.org/10.1093/nar/16.16.8147
  14. Hsiao, Y. and R. D. Stewart. 2008. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Phys. Med. Biol. 53: 233-244. https://doi.org/10.1088/0031-9155/53/1/016
  15. http://www.dt.co.kr/contents.html?article_no=2008110402019922732016.
  16. Jeong, H. and J. Han. 2010. Enhancing the 1-butanol tolerance in Escherichia coli through repetitive proton beam irradiation. J. Kor. Phy. Soc. 56: 2041-2045. https://doi.org/10.3938/jkps.56.2041
  17. Jung, I. L., K. H. Phyo, K. C. Kim, H. K. Park, and I. G. Kim. 2005. Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res. Microbiol. 156: 865-873. https://doi.org/10.1016/j.resmic.2005.04.004
  18. Kanbashi, K., X. Wang, J. Komura, T. Ono, and K. Yamamoto. 1997. Frameshifts, base substitutions and minute deletions constitute X-ray-induced mutations in the endogenous tonB gene of Escherichia coli K12. Mutat. Res. 385: 259-267. https://doi.org/10.1016/S0921-8777(97)00056-6
  19. Kaul, B. L. 1970. Studies on radioprotective role of dimethyl sulfoxide in plants. Radiation Botany 10: 69-78. https://doi.org/10.1016/S0033-7560(70)80053-9
  20. Knoshaug, E. P. and M. Zhang. 2009. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153: 13-20. https://doi.org/10.1007/s12010-008-8460-4
  21. Monobe, M., A. Uzawa, M. Hino, K. Ando, and S. Kojima. 2005. Glycine betaine, a beer component, protects radiationinduced injury. J. Radiat. Res. 46: 117-121. https://doi.org/10.1269/jrr.46.117
  22. Moos, W. S. and S. E. Kim. 1966. Radioprotective effect of topically applied dimethyl sulfoxide on mice. Experientia 22: 814. https://doi.org/10.1007/BF01897433
  23. Muller, H. J. 1927. Artificial Transmutation of the Gene. Science 66: 84-87. https://doi.org/10.1126/science.66.1699.84
  24. Park, H. S., S. H. Nam, J. K. Lee, C. N. Yoon, B. Mannervik, S. J. Benkovic, and H. S. Kim. 2006. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311: 535-538. https://doi.org/10.1126/science.1118953
  25. Park, J. H., S. Y. Lee, T. Y. Kim, and H. U. Kim. 2008. Application of systems biology for bioprocess development. Trends Biotechnol. 26: 404-412. https://doi.org/10.1016/j.tibtech.2008.05.001
  26. Posfai, G., G. Plunkett, 3rd, T. Feher, D. Frisch, G. M. Keil, K. Umenhoffer, V. Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum, and F. R. Blattner. 2006. Emergent properties of reduced-genome Escherichia coli. Science 312: 1044-1046. https://doi.org/10.1126/science.1126439
  27. Reed, J. L. and B. O. Palsson. 2003. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185: 2692-2699. https://doi.org/10.1128/JB.185.9.2692-2699.2003
  28. Romero, P. A. and F. H. Arnold. 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10: 866-876. https://doi.org/10.1038/nrm2805
  29. Rosenberg, S. M. 2001. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2: 504-515.
  30. Rust, D. M. 1992. Solar flares: An overview. Adv. Space Res. 12: 289-301.
  31. Sapora, O., F. Barone, M. Belli, A. Maggi, M. Quintiliani, and M. A. Tabocchini. 1991. Relationships between cell killing, mutation induction and DNA damage in X-irradiated V79 cells: the influence of oxygen and DMSO. Int. J. Radiat. Biol. 60: 467-482. https://doi.org/10.1080/09553009114552321
  32. Sargentini, N. J. and K. C. Smith. 1994. DNA sequence analysis of gamma-radiation (anoxic)-induced and spontaneous lacId mutations in Escherichia coli K-12. Mutat. Res. 309: 147-163. https://doi.org/10.1016/0027-5107(94)90088-4
  33. Sharan, S. K., L. C. Thomason, S. G. Kuznetsov, and D. L. Court. 2009. Recombineering: a homologous recombinationbased method of genetic engineering. Nat. Protoc. 4: 206-223. https://doi.org/10.1038/nprot.2008.227
  34. Shikazono, N., M. Noguchi, K. Fujii, A. Urushibara, and A. Yokoya. 2009. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J. Radiat. Res. 50: 27-36. https://doi.org/10.1269/jrr.08086
  35. Singh, D. R., J. M. Mahajan, and D. Krishnan. 1976. Effect of dimethyl sulfoxide (DMSO) on radiation-induced heteroallelic reversion in diploid yeast. Mutat. Res. 37: 193-200. https://doi.org/10.1016/0027-5107(76)90033-6
  36. Stadler, L. J. 1928. Mutations in Barley Induced by X-Rays and Radium. Science 68: 186-187. https://doi.org/10.1126/science.68.1756.186
  37. Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391. https://doi.org/10.1038/370389a0
  38. Takimoto, K., K. Uchino, K. Ishizaki, and M. Ikenaga. 1991. Specificity of mutational DNA sequence changes induced by X-rays in the cloned Escherichia coli crp gene. Mutat. Res. 254: 199-206. https://doi.org/10.1016/0921-8777(91)90057-V
  39. Tanaka, A., N. Shikazono and Y. Hase. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J. Radiat. Res. 51: 223-233.
  40. Tanaka, A., A. Sakamoto, Y. Ishigaki, O. Nikaido, G. Sun, Y. Hase, N. Shikazono, S. Tano, and H. Watanabe. 2002. An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol. 129: 64-71. https://doi.org/10.1104/pp.010894
  41. Wang, H. H., F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, and G. M. Church. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894-898. https://doi.org/10.1038/nature08187
  42. Yamaguchi, H., S. Nagatomi, T. Morishita, K. Degi, A. Tanaka, N. Shikazono, and Y. Hase. 2003. Mutation induced with ion beam irradiation in rose. Nucl. Instrum. Meth. B 206: 561-564. https://doi.org/10.1016/S0168-583X(03)00825-5
  43. Yu, B. J., B. H. Sung, M. D. Koob, C. H. Lee, J. H. Lee, W. S. Lee, M. S. Kim, and S. C. Kim. 2002. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat. Biotechnol. 20: 1018-1023. https://doi.org/10.1038/nbt740
  44. Yu, Z., J. Deng, J. He, Y. Huo, Y. Wu, X. Wang, and G. Lui. 1991. Mutation breeding by ion implantation. Nucl. Instrum. Meth. B 59-60: 705-708. https://doi.org/10.1016/0168-583X(91)95307-Y
  45. Yu, Z. 2007. Study on the interaction of low-energy ions with organisms. Surf. Coat. Tech. 201: 8006-8013. https://doi.org/10.1016/j.surfcoat.2006.09.316
  46. Zengliang, Y., Y. Jianbo, W. Yuejin, C. Beijiu, H. Jianjun, and H. Yuping. 1993. Transferring Gus gene into intact rice cells by low energy ion beam. Nucl. Instrum. Meth. B 80-81: 1328-1331. https://doi.org/10.1016/0168-583X(93)90793-6
  47. Zengliang, Y. Introduction to Ion Beam Biotechnology, Springer Science+Buisiness Media Inc., New York, 2006.