방선균 시토크롬 P450와 전자전이시스템

Streptomyces Cytochrome P450 and Electron Transport System

  • 송재경 (선문대학교 건강보건대학 제약공학과, 생체분자재설계연구소) ;
  • 오태진 (선문대학교 건강보건대학 제약공학과, 생체분자재설계연구소)
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • 투고 : 2010.06.07
  • 심사 : 2010.07.16
  • 발행 : 2010.09.28

초록

Cytochrome P450 enzymes which require the supply of electrons from NAD(P)H have a great biotechnological impact as they catalyze valuable reactions on a vast variety of substrates. However, very limited biotechnological application has been reported so far due to their functional complexity, limited stability (instability) and, in most cases, low catalytic activity. In this present review, we introduce some possibilities for improving their defect by exploring electron transport system and substrate flexibility in field of Streptomyces cytochrome P450.

키워드

참고문헌

  1. Andersen, J. F., K. Tatsuta, H. Gunji, T. Ishiyama, and C. R. Hutchinson. 1993. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32: 1905-1913. https://doi.org/10.1021/bi00059a004
  2. Bernhardt, R. 2006. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124: 128-145. https://doi.org/10.1016/j.jbiotec.2006.01.026
  3. Carreras, C., S. Frykman, S. Ou, L. Cadapan, S. Zavala, E. Woo, T. Leaf, J. Carney, M. Burlingame, S. Patel, G. Ashley, and P. Licari. 2002. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins. J. Biotechnol. 92: 217-228. https://doi.org/10.1016/S0168-1656(01)00372-8
  4. Chun, Y. J., T. Shimada, R. Sanchez-Ponce, M. V. Martin, L. Lei, B. Zhao, S. L. Kelly, M. R. Waterman, D. C. Lamb, and F. P. Guengerich. 2007. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5- catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 282: 17486-17500. https://doi.org/10.1074/jbc.M700863200
  5. Chung, L., L. Liu, S. Patel, J. R. Carney, and C. D. Reeves. 2001. Deletion of rapQONML from the rapamycin gene cluster of Streptomyces hygroscopicus gives production of the 16-O-desmethyl-27-desmethoxy analog. J. Antibiot. (Tokyo) 54: 250-256. https://doi.org/10.7164/antibiotics.54.250
  6. Cryle, M. J., N. J. Matovic, and J. J. De Voss. 2003. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids. Org. Lett. 5: 3341-3344. https://doi.org/10.1021/ol035254e
  7. Dardas, A., G. Gal, M. Barrelle, G. Sauret-Ignazi, R. Sterjiades, and J. Pelmont. 1985. The demethylation of guaiacol by a new bacterial cytochrome P-450. Arch. Biochem. Biophys. 236: 585-592. https://doi.org/10.1016/0003-9861(85)90662-9
  8. Falquet, L., M. Pagni, P. Bucher, N. Hulo, C. J. Sigrist, K. Hofmann, and A. Bairoch. 2002. The PROSITE database, its status in 2002. Nucleic Acids Res. 30: 235-238. https://doi.org/10.1093/nar/30.1.235
  9. Fouces, R., E. Mellado, B. Diez, and J. L. Barredo. 1999. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145: 855-868. https://doi.org/10.1099/13500872-145-4-855
  10. Gaisser, S., R. Lill, J. Staunton, C. Méndez, J. Salas, and P. F. Leadlay. 2002. Parallel pathways for oxidation of 14- membered polyketide macrolactones in Saccharopolyspora erythraea. Mol. Microbiol. 44: 771-781. https://doi.org/10.1046/j.1365-2958.2002.02910.x
  11. Grimm, A., K. Madduri, A. Ali, and C. R. Hutchinson. 1994. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151: 1-10. https://doi.org/10.1016/0378-1119(94)90625-4
  12. Guengerich, F. P. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14: 611-650. https://doi.org/10.1021/tx0002583
  13. Guengerich, F. P. 2004. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36: 159-197. https://doi.org/10.1081/DMR-120033996
  14. Guengerich, F. P. and T. L. MacDonald. 1990. Mechanisms of cytochrome P-450 catalysis. FASEB J. 4: 2453-2459.
  15. Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
  16. Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems--biological variations of electron transport chains. Biochim. Biophys. Acta. 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
  17. Hunukoglu, I. and T. Gutfinger. 1989. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur. J. Biochem. 180: 479-484. https://doi.org/10.1111/j.1432-1033.1989.tb14671.x
  18. Hutchinson, C. R. 1998. Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1: 319-329. https://doi.org/10.1016/S1369-5274(98)80036-2
  19. Iffland, A., S. Gendreizig, P. Tafelmeyer, and K. Johnsson. 2001. Changing the substrate specificity of cytochrome c peroxidase using directed evolution. Biochem. Biophys. Res. Commun. 286: 126-132. https://doi.org/10.1006/bbrc.2001.5366
  20. Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. U S A. 96: 9509-9514. https://doi.org/10.1073/pnas.96.17.9509
  21. Ioannides, C. and D. F. Lewis. 2004. Cytochromes P450 in the bioactivation of chemicals. Curr. Top. Med. Chem. 4: 1767-1788. https://doi.org/10.2174/1568026043387188
  22. Johnson, D. C., D. R. Dean, A. D. Smith, and M. K. Johnson. 2005. Structure, function, and formation of biological ironsulfur clusters. Annu. Rev. Biochem. 74: 247-281. https://doi.org/10.1146/annurev.biochem.74.082803.133518
  23. Joo, H., Z. Lin, and F. H. Arnold. 1999. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399: 670-673. https://doi.org/10.1038/21395
  24. Katagiri, M., B. N. Ganguli, and I. C. Gunsalus. 1968. A soluble cytochrome P-450 functional in methylene hydroxylation. J. Biol. Chem. 243: 3543-3546.
  25. Katz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557-2576. https://doi.org/10.1021/cr960025+
  26. Kuznetsov, V. Y., E. Blair, P. J. Farmer, T. L. Poulos, A. Pifferitti, and I. F. Sevrioukova. 2005. The putidaredoxin reductase-putidaredoxin electron transfer complex: theoretical and experimental studies. J. Biol. Chem. 280: 16135-16142. https://doi.org/10.1074/jbc.M500771200
  27. Mueller, R., O. Asperger, and H. P. Kleber. 1989. Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus. Biomed. Biochim. Acta. 48: 243-254.
  28. Narhi, L. O. and A. J. Fulco. 1986. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P- 450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261: 7160-7169.
  29. Nebert, D. W., M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, B. Kemper, W. Levin, I. Philips, R. Sato, and M. Waterman. 1987, The P450 gene superfamily: recommended nomenclature. DNA 6: 1-11. https://doi.org/10.1089/dna.1987.6.1
  30. Nelson, D. R., T. Kamataki, D. J. Waxman, F. P. Guengerich, R. W. Estabrook, R. Feyereisen, F. J. Gonzalez, M. J. Coon, I. C. Gunsalus, O. Gotoh. et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1-51. https://doi.org/10.1089/dna.1993.12.1
  31. O'Keefe, D. P. and P. A. Harder. 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol. Microbiol. 5: 2099-2105. https://doi.org/10.1111/j.1365-2958.1991.tb02139.x
  32. Omura, T. and R. Sato. 1962. A new cytochrome in liver microsomes. J. Biol. Chem. 237: 1375-1376.
  33. Parajuli, N., D. B. Basnet, H. C. Lee, J. K. Sohng, and K. Liou. 2004. Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch. Biochem. Biophys. 425: 233-241. https://doi.org/10.1016/j.abb.2004.03.011
  34. Peterson, J. A., J. Y. Lu, J. Griesselsoder, S. Graham-Lorence, C. Carmona, F. Witney, and M. C. Lorence. 1992. Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon. J. Biol. Chem. 267: 14193-14203.
  35. Podust, L. M., H. Bach, Y. Kim, D. C. Lamb, M. Arase, D. H. Sherman, S. L. Kelly, and M. R. Waterman. 2004. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci. 13: 255-268. https://doi.org/10.1110/ps.03384804
  36. Porter, C. T., G. J. Bartlett, and J. M. Thornton. 2004. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: D129-D133. https://doi.org/10.1093/nar/gkh028
  37. Raillard, S., A. Krebber, Y. Chen, J. E. Ness, E. Bermudez, R. Trinidad, R. Fullem, C. Davis, M. Welch, J. Seffernick, L. P. Wackett, W. P. Stemmer, and J. Minshull. 2001. Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8: 891-898. https://doi.org/10.1016/S1074-5521(01)00061-8
  38. Rix, U., C. Fischer, L. L. Remsing, and J. Rohr. 2002. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 19: 542-580. https://doi.org/10.1039/b103920m
  39. Roberts, G. A., G. Grogan, A. Greter, S. L. Flitsch, and N. J. Turner. 2002. Identification of a new class of cytochrome P450 from a Rhodococcus sp. J. Bacteriol. 184: 3898-3908. https://doi.org/10.1128/JB.184.14.3898-3908.2002
  40. Shafiee, A. and C. R. Hutchinson. 1988. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J. Bacteriol. 170: 1548-1553.
  41. Shah, S., Q. Xue, L. Tang, J. R. Carney, M. Betlach, and R. McDaniel. 2000. Cloning, characterization and heterologous expression of a polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. J. Antibiot. (Tokyo) 53: 502-508. https://doi.org/10.7164/antibiotics.53.502
  42. Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008a. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562. https://doi.org/10.1007/s00253-008-1455-9
  43. Shrestha, P., T.-J. Oh, N. P. Niraula, K. Liou, J. C. Yoo, and J. K. Sohng. 2010. Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC27952. Enzyme Microb. Technol. 46: 372-377. https://doi.org/10.1016/j.enzmictec.2009.12.016
  44. Shrestha, P., T.-J. Oh, and J. K. Sohng. 2008b. Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol. Lett. 30: 1101-1106. https://doi.org/10.1007/s10529-008-9654-0
  45. Trower, M. K., F. S. Sariaslani, and D. P. O'Keefe. 1989. Purification and characterization of a soybean flour-induced cytochrome P-450 from Streptomyces griseus. J. Bact. 171: 1781-1787.
  46. Ullah, A. J. H., R. I. Murray, P. K. Bhattachuaryya, G. C. Wagner, and I. C. Gunsalus. 1990. Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase. J. Biol. Chem. 265: 1345-1351.
  47. Warman, A. J., O. Roitel, R. Neeli, H. M. Girvan, H. E. Seward, S. A. Murray, K. J. McLean, M. G. Joyce, H. Toogood, R. A. Holt, D. Leys, N. S. Scrutton,and A. W. Munro. 2005. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochem. Soc. Trans. 33: 747-753. https://doi.org/10.1042/BST0330747
  48. Werck-Reichhart, D. and R. Feyereisen. 2000. Cytochromes P450: a success story. Genome Biol. 11: REVIEWS3003.1-3003.9.
  49. Xue, Y., D. Wilson, L. Zhao, H. Liu, and D. H. Sherman. 1998. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5: 661-667. https://doi.org/10.1016/S1074-5521(98)90293-9