Ultrastructural Changes in digestive gland and Lipofuscin Accumulation of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) on Tributyltin chloride (TBTCl) Toxicity

TBTCl 독성에 의한 대복, Gomphina veneriformis 소화선의 미세구조적 변화 및 지방갈색소 축적

  • Park, Jung-Jun (Pathology Division, NFRDI) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University)
  • 박정준 (국립수산과학원 병리연구과) ;
  • 이정식 (전남대학교 수산해양대학 수산생명의학과)
  • Received : 2009.11.30
  • Accepted : 2010.01.26
  • Published : 2010.03.31

Abstract

The purpose of this study was to investigate the effect of tributyltin (TBT) on histopathological and ultrastructural changes in the digestive gland structure of the equilateral venus, Gomphina veneriformis. Experimental period was 36 weeks. Experimental groups consist of control condition and 3 TBTCl exposure conditions (0.4, 0.6, $0.8\;TBTC\;{\mu}g\;L^{-1}$). Outer envelop of the visceral mass of G. veneriformis exposed to TBTCl was observed disappearance of microvilli and cilia, decrease of mucous cell and partially destruction of epithelium. In the digestive gland showed an increase of number of hemocyte and mucopolysaccaride near the digestive tubule at early time of the exposure. Especially, in $0.8\;TBTC\;{\mu}g\;L^{-1}$ group, collapse of digestive tubule with modification of epithelium was observed. TEM observation revealed the numerous glycogen granules in epithelium of the outer envelop and connective tissue. In the ciliated cell of the primary duct formed the cilia in cytoplasm. Basophilic cell was observed destruction of the rough endoplasmic reticulum and mitochondria. Also, nucleus in the epithelium of the digestive tubule was disappeared heterochromatin and nucleolus, and condense. As the concentration of TBTCl increased, the accumulation of lipofucin increased in the digestive gland, but the collapse of digestive tubule induced a decrease of accumulation of lipofuscin.

TBTCl에 36주 동안 노출된 대복, Gomphina veneriformis 소화선의 미세구조적 변화와 지방갈색소의 축적을 관찰한 결과 외막상피층의 경우 점액세포 감소, 섬모 탈락 및 선조연의 부분적인 소실이 관찰되었다. 소화선세관에서는 저농도의 개체들에서 소화선세관 내강에 소화효소의 양이 증가하였지만 농도 의존적으로 소화선세관의 세포들이 입방형 또는 편평형으로 변하여 세포층의 두께가 얇아지며, 부분적으로 파괴가 관찰되었다. 이러한 광학현미경적 증상들을 자현미경으로 관찰한 결과 내장낭 외막 상피세포와 소화선세관을 둘러싸고 있는 근섬유사이에는 다수의 글리코겐 과립들이 관찰되었고, 호염기성 세포들에서는 조면소포체의 파괴와 세포의 괴사로 인하여 핵의 응축 및 핵막의 파괴가 관찰되었다. 이러한 소화선세관 세포들의 변화로 세포층은 고농도로 대조구와 유의적인 차이를 보이며, 두께가 감소하였다 (P < 0.05). Long Ziehl Neelsen 염 결과, 소화선세관의 세포에서 자주색으로 관찰되는 지방갈색소는 대조구와 유의적인 차이를 보이며 증가하였지만 (P < 0.05), 노출이 진행될수록 소화선세관 세포들이 파괴됨에 따라 그 축적도 감소하였다. 따라서 본 연구 결과 TBT는 대복 소화선세관 세포들의 미세구조를 파괴함에 따라서 이들 세포들이 가지는 소화기능을 억제하는 것으로 생각되어지며, 농도 의존적으로 지방갈색소의 축적이 높아지기 때문에 지방 갈색소는 TBT의 오염정도를 파악하기 위한 biomarker로서 충분히 이용 가능한 것으로 생각된다.

Keywords

References

  1. Adelman, D., Hinha, K.R., and Pilson, M.E.Q. (1990) Biogeochemistry of butyltins in an enclosed marine ecosystem. Envrion. Sci. Technol., 24: 1027-1032. https://doi.org/10.1021/es00077a012
  2. Alzieu, C., Sanjuan, J., Deltreil, J.P., and Borel, M. (1986) Tin contamination in Arcachon Bay: effects on oyster shell anomalies. Mar. Pollut. Bull., 17: 494-498. https://doi.org/10.1016/0025-326X(86)90636-3
  3. Anonymous, N. (2001) International Convention on the Control of Harmfu Anti-fouling Systems on Ships. IMO. London
  4. Blaber, S.J.M. (1970) The occurrence of penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus. Porc. Malacol. Scotland., 39: 231-233.
  5. Brick, M., and Bolte, M. (1994) Cytology of the outer penis epithelium of Buccinum undatum (L.) from the arctic region-an observation of the imposex phenomenon. Helgolander Meeresuntersuchungen, 48: 123-131. https://doi.org/10.1007/BF02366206
  6. Brunk, U.T., and Terman, A. (2002) Lipofuscin; mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med., 33: 611-619. https://doi.org/10.1016/S0891-5849(02)00959-0
  7. Bubel, A. (1989) Microstructure and function of cells; Electron micrographs of cell ultrastructure pp. 95-98. Ellis Horwood Limited. Chichester.
  8. Byrne, P.A., and O'Halloran, J. (1999) Aspects of assaying sediment toxicity in Irish estuarine ecosystems. Mar. Pollut. Bull., 39: 97-105. https://doi.org/10.1016/S0025-326X(99)00121-6
  9. Byrne, P.A., and O'Halloran, J. (2001) The role of bivalve molluscs as tools in estuarine sediment toxity testing: a review. Hydrobiologia, 465: 209-217. https://doi.org/10.1023/A:1014584607501
  10. Chiavarini, S., Massanisso, P., Nicolai, P., Nobili, C., and Morabito, R. (2003) Butyltins concentration levels and imposex occurrence in snails from the Sicilian coasts (Italy). Chemosphere, 50: 311-319. https://doi.org/10.1016/S0045-6535(02)00601-X
  11. Da Ros, L., Nasci, C., Marigómez, I., and Soto, M. (2000) Biomarkers and trace metals in the digestive gland of indigenous and transplanted mussels, Mytilus galloprovincialis, in Venice Lagoon, Italy. Mar. Environ. Res., 50: 417-423. https://doi.org/10.1016/S0141-1136(00)00038-6
  12. de Mora, S.J., King, N.G., and Miller, M.C. (1989) Tributyltin and total tin in marine sediments; profiles and apparent rate of TBT degradation. Envrion. Technol. Lett., 10: 901-908. https://doi.org/10.1080/09593338909384811
  13. Dimitriadis, V.K., Domouhtsidou, G.P., and Cajaraville, M.P. (2004) Chtochemical and histochemical aspects of the digestive gland cells of the mussel Mytilus galloprovincialis (L.) in relaton to function. J. Mol. Histol., 35: 501-509.
  14. Dimitriadis, V.K., Domouhtsidou, G.P., and Raftopoulou, E. (2003) Localization of Hg and Pb in the palps, the digestive gland and the gills in Mytilus galloprovincialis (L.) using autometallography and X-ray microanalysis. Environ. Pollut, 125: 345-353. https://doi.org/10.1016/S0269-7491(03)00122-2
  15. Domouhtsidou, G.P., and Dimitriadis, V.K. (2001) Lysosomal and lipid laterations in the digestive gland of mussels, Mytilus galloprovincialis (L.) as biomarkers of environmental stress. Envrion. Pollut., 115: 123-137. https://doi.org/10.1016/S0269-7491(00)00233-5
  16. Dubey, S.K., and Roy, U. (2003) Biodegradation of tributyltins (organotins) by marine bacteria. App. Organomet. Chem., 17: 3-8. https://doi.org/10.1002/aoc.394
  17. Eble, A.F. (2001) Anatomy and histology of Mercenaria mercenaria. In: Kraeuter JN, Castagna M (eds) Biology of the hard clam. Elsevier, New York, pp 117-220
  18. EPA, U.S. (1997) Special report on environmental endocrine disruption: An effects assessment and analysis pp. 1-120, Washington, D.C
  19. Etxeberria, M., Sastre, I., Cajaraville, M.P., and Marigomez, I. (1994) Digestive lysosome enlargement induced by experimental exposure to metals (Cu, Cd and Zn in mussels collected from a zinc polluted site). Arch. Environ. Contam. Toxicol, 24: 338-345.
  20. Folsvik, N., Berge, J.A., Brevik, E.M., and Walday, M. (1999) Quantification of organotin compounds and determination of imposex in populations of dogwhelk (Nucella lapillus) from Norway. Chemosphere, 38: 681-691. https://doi.org/10.1016/S0045-6535(98)00202-1
  21. Folsvik, N., Brevik, E.M., Berge, J.A., and Dam, M. (1998) Organotin and imposex in the littoral zone in the Faroe Islands. Frodskaparrit, 46: 67-80.
  22. Gibbs, P.E., and Bryan, G.W. (1986) Reproductive failure in populations of the dogwhelk, Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints. J. Mar. Biol. Assoc. U.K, 66: 767-777. https://doi.org/10.1017/S0025315400048414
  23. Gomez-Ariza, J.L., Giraldez, I., and Morales, E. (2000) Temporal fluctuations of tributyltin in the bivalve Venerupis decussata at five stations in southwest Spain. Envion. Pollut., 108: 279-290. https://doi.org/10.1016/S0269-7491(99)00184-0
  24. Hagiwara, H., Ohwada, N., and Takata, K. (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int'l. Rev. Cytolo., 234: 101-141. https://doi.org/10.1016/S0074-7696(04)34003-9
  25. Hinch, S.G., and Stephenson, L.A. (1987) Size-and age-specific patterns of trace metal concentrations on fresh water clams from on acid-sensitive and a circumneutral lake. Can. J. Zool., 65: 2436-2442. https://doi.org/10.1139/z87-368
  26. Hole, L.M., Moore, M.N., and Bellamy, D. (1992) Age-related differences in the recovery of lysosomes from stressinduced pathological reactions in marine mussels. Mar. Environmental Research, 34: 75-80. https://doi.org/10.1016/0141-1136(92)90086-2
  27. Hole, L.M., Moore, M.N., and Bellamy, D. (1993) Age-related cellular reactions to copper in the marine mussel Mytilus edulis. Marine Ecology Progress Series, 94: 175-179. https://doi.org/10.3354/meps094175
  28. Hole, L.M., Moore, M.N., and Bellamy, D. (1995) Age-related cellular and physiological reactions to hypoxia and hyperthermia in marine mussels. Marine Ecology Progress Series, 122: 173-178. https://doi.org/10.3354/meps122173
  29. Horiguchi, T., Shiraishi, H., Shimizu, M., Yamazaki, S., and Morita, M. (1994) Imposex and organotin compounds in Thais clavigera and T. bronni in Japan. J. Mar. Biol. Assoc. U.K, 74: 651-669. https://doi.org/10.1017/S002531540004772X
  30. Horiguchi, T., Takiguchi, N., Cho, H.S., Kojima, M., Kaya, M., Shiraishi, H., Morita, M., Hirose, H., and Shimizu, M. (2000) Ovo-testis and disturbed reproductive cycle in the giant abalone, Haliotis madaka: possible inkage with organotin contamination in a site of populaton decline. Mar. Environ. Res., 50: 223-229. https://doi.org/10.1016/S0141-1136(00)00071-4
  31. Krishnakumar, P.K., Asokan, P.K., and Pillai, V.K. (1990) Physiological and cellular responses to copper and mercury in the green mussel Perna viridis (Linnaeus). Aquatic Toxicology, 18: 163-173. https://doi.org/10.1016/0166-445X(90)90024-J
  32. Krishnakumar, P.K., Casillas, E., and Varanasi, U. (1997) Cytochemical responses in the digestive tissue of Mytilus edulis complex exposed to microencapsulated PAHs or PCBs. Comp. Biochem. Physiol. C, 118: 11-18.
  33. Lee, J.S., and Park, J.J. (2007) Risk assessment of nonylphenol using the sex ratio, sexual maturation, intersex and lipofuscin accumulation of the equilateral venus, Gomphina veneriformis (Bivalvia: Veneridae). J. Kor. Fish. Soc., 40: 16-23.
  34. Lomovasky, B.J., Morriconi, E., Brey, T., and Calvo, J. (2002) Individual age and connective tissue lipofuscin in the hard clam Eurhomalea exalbida. Journal of Experimental Marine Biology and Ecology., 276: 83-94. https://doi.org/10.1016/S0022-0981(02)00240-X
  35. Mathew, S., and Damodaran, R. (1997) Lipofuscin as physiological indicator of heavy metal stress in Sunetta scripta (yellow clam) and Perna viridis (green mussel). Indian Journal of Marine Sciences, 26: 64-67.
  36. Moore, M.N. (1988) Cytochemical responses of the lysosomal system and NADPH-ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Mar. Ecol. Prog. Ser., 46: 81-89. https://doi.org/10.3354/meps046081
  37. Moore, M.N. (1990) Lysosomal cytochemistry in marine environmental monitoring. Histochem, 22: 279-287.
  38. Moore, M.N., Allen, J.I., and Somerfield, P.J. (2006) Autophagy: Role in surviving environmental stress. Marine Environmental Research, 62: S420-S425. https://doi.org/10.1016/j.marenvres.2006.04.055
  39. Morrison, C.M. (1993) Histology and cell ultrastructure of the mantle and mantle lobes of the Estern oyster, Crassostrea virginica Gmelin: A summary atlas. Amer. Malac. Bull., 10: 1-24.
  40. Morse, M.P., and Zardus, J.D. (1997) Bivalvia. In: Harrison F, Kohn A (eds) Microscopic anatomy of invertebrates, Vol. 6A, Mollusca II. A John Wiley & Sons. Inc., Publication, New York, pp 7-118
  41. Morton, B.S. (1983) The biology and functional morphology of the weisted ark Trisidos semitorta (Bicalvia: Arcacea) with a discussion on shell "torsion" in the genus. Malacologia, 23: 375-396.
  42. Otludil, B., Cengiz, E.I., Yildirim, M.Z., Unver, O., and Unlu, E. (2004) The effects of endosulfan on the great ramshorn snail Planorbarius corneus (Gastropoda, Pulmonata): a histopathological study. Chemosphere, 56: 707-716. https://doi.org/10.1016/j.chemosphere.2004.04.027
  43. Owen, G. (1972) Lysosomes, peroxisomes and bivalves. Sci. Prog. Oxf., 60: 299-318.
  44. Pavelka, M., and Roth, J. (2005) Functional ultrastructure; An atlas of tissue biology and pathology pp. 326. Springer. New York
  45. Pearse, E.A.G. (1985) Pigments and pigment precursors. Histochemistry, theoretical and applied. Churchill Livingstone, Edinburgh London Melbourne and New York, pp 916
  46. Pekkarinen, M. (1996) Scanning electron microscopy, whole-mount histology, and histochemistry of two Anodontine glochidia (Bivalvia: Unionidae). J. Zool., 74: 1964-1973.
  47. Quinn, B., Gagne, F., Costello, M., McKenzie, C., Wilson, J., and Mothersill, C. (2004) The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha). Aquatic Toxicology, 66: 279-292. https://doi.org/10.1016/j.aquatox.2003.10.007
  48. Rasmussen, L.P.D., Hage, E., and Karlog, O. (1983) Light and electron microscopic studies of the acute and chronic toxic effects of N-nitoroso compounds on the marine mussel, Mytilus edulis (L). II. N-methyl-N-nitro-N-nitrodoguanidine. Aquat. Toxicol 3, 3: 301-311. https://doi.org/10.1016/0166-445X(83)90012-7
  49. Regoli, F. (1992) Lysosomal responses as sensitive stress index in biomonitoring heavy metal pollution. Mar. Ecol. Prog. Ser., 84: 63-69. https://doi.org/10.3354/meps084063
  50. Regoli, F., and Orlando, E. (1994) Accumulation and subcelluar distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel Mytilus galloprovincialis during a field transplant experiment. Mar. Pollut. Bull., 28: 592-600. https://doi.org/10.1016/0025-326X(94)90360-3
  51. Ross, M.H., Kaye, G.I., and Pawlina, W. (2003) Histology; A text and atlas pp. 875, Philadelhia
  52. Santos, M.M., Ten Hallers-Tjabbes, C.C., Santos, A.M., and Vieira, N. (2002) Imposex in Nucella lapillus, a bioindicator for TBT contamination: re-survey along the Portuguese coast to monitor the effectiveness of EU regulation. Journal of Sea Research, 48: 217-223. https://doi.org/10.1016/S1385-1101(02)00166-1
  53. Santos, M.M., Vieira, N., and Santos, A.M. (2000) Imposex in the dogwhelk Nucella lapillus (L.) along the Portuguese caost. Mar. Pollut. Bull., 40: 643-646. https://doi.org/10.1016/S0025-326X(00)00017-5
  54. Siah, A., Pellerin, J., Amiard, J.C., Pelletier, E., and Viglino, L. (2003) Delayed gametogenesis and progesterone levels in soft-shell clams (Mya arenaria) in relation to in situ contamination to organotins and heavy metals in the St. Lawrence River (Canada). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135: 145-156. https://doi.org/10.1016/S1532-0456(03)00085-1
  55. Smith, B.S. (1971) Sexuality in the American mud snail, Nassarius obsoletus. Proc. Malacol. Soc. Lond., 39: 377-378.
  56. Sole, M., Morcillo, Y., and Porte, C. (1998) Imposex in the commercial snail Bolinus brandaris in the northwestern Mediterranean. Environmental Pollution, 99: 241-246. https://doi.org/10.1016/S0269-7491(97)00186-3
  57. Soto, M., Cajaraville, M.P., and Marigomez, I. (1996) Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilus galloprovincialis, determined by autometallography. Tissue and Cell, 28: 557-568. https://doi.org/10.1016/S0040-8166(96)80058-9
  58. Stephenson, M. (1991) A field bioassay approach to determining tributyltin toxicity to oysters in California. Marine Environmental Research, 32: 51-59. https://doi.org/10.1016/0141-1136(91)90033-5
  59. Sukhotin, A.A., Abele, D., and Pörtner, H.-O. (2002) Growth, metabolism and lipid peroxidation in Mytilus edulis L.: age and size effects. Mar. Ecol. Prog. Ser., 226: 223-234. https://doi.org/10.3354/meps226223
  60. Viarengo, A., Canesi, L., Pertica, M., Poli, G., Moore, M.N., and Orunesu, M. (1990) Heavy metal effects on lipid peroxidation in the tissues of mytilus galloprovincialis lam. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 97: 37-42. https://doi.org/10.1016/0742-8413(90)90168-9
  61. Viarengo, A., and Nott, J.A. (1993) Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 104: 355-372. https://doi.org/10.1016/0742-8413(93)90001-2
  62. Waldock, M.J., and Thain, J.E. (1983) Shell thickening in Crassostrea gigas: Organotin antifouling or sediment induced? Marine Pollution Bulletin, 14: 411-415. https://doi.org/10.1016/0025-326X(83)90445-9
  63. Yamada, H., and Takayanagi, K. (1992) Bioconcentration and elimination of bis (tributyltin) oxide (TBTO) and triphenyltin chloride (TPTC) in several marine fish species. Water Research, 26: 1589-1595. https://doi.org/10.1016/0043-1354(92)90158-Z
  64. Zorita, I., Ortiz-Zarragoitia, M., Soto, M., and Cajaraville, M.P. (2006) Biomarkers in mussels from a copper site gradient (Visnes, Norway): An integrated biochemical, histochemical and histological study. Aquatic Toxicology, 78: S109-S116. https://doi.org/10.1016/j.aquatox.2006.02.032