The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System

CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향

  • Cho, Sang-Hyun (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Cui, Mingcan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Nam, Sang-Geon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jung, Hee-Suk (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Khim, Jee-Hyeong (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 조상현 (고려대학교 건축사회환경공학과) ;
  • 최명찬 (고려대학교 건축사회환경공학과) ;
  • 남상건 (고려대학교 건축사회환경공학과) ;
  • 정희숙 (한국과학기술연구원 물환경센터) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Received : 2010.11.09
  • Accepted : 2010.12.27
  • Published : 2010.12.31

Abstract

To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

본 연구에서는 Compound parabolic concentrator reactor system을 이용하여 초기농도 10 mg/L의 클로로포름을 광촉매 반응으로 처리하였다. 1000 W의 메탈할라이드 방전램프를 인공태양광원으로 사용하였으며 약 99%의 클로로포름이 광촉매반응에 의하여 90분 안에 제거되어 먹는물 수질기준인 0.08 mg/L을 만족하였다(pH 5.24, $TiO_2$ 농도 0.2 g/L). 또한 초기 pH와 $TiO_2$ 농도가 클로로포름의 분해에 미치는 영향 을 알아보기 위해 pH 4, 5, 6, 7과 $TiO_2$ 농도 0.1, 0.2, 0.4의 조건에서 실험을 수행하였으며, 각 pH 에서의 $TiO_2$ 입자크기(particle size)와 비표면적(specific surface area)을 측정하여 클로로포름 분해율과 비교하여 비표면적과 광촉매반응 활성 사이의 상관관계를 규명하고자 하였다. 그 결과 pH와$TiO_2$ 농도에 따른 클로로포름 분해율은 큰 차이를 보이지 않았다. 하지만 pH에 따라 $TiO_2$의 입자크기분포(particle distribution)와 비표면적이 변했고 pH 7은 다른 pH 영역보다 비표면적이 약 2배 정도 작은 결과를 보였다. 본 연구의 결과를 바탕으로 클로로포름의 광촉매반응은 $TiO_2$의 비표면적과 상관관계가 없는 TCE-type인 것을 유추할 수 있었다.

Keywords

References

  1. 최원용, "$TiO_{2}$ 광촉매 반응 연구," 대한공업화학회지, 14(8), 1011-1022(2003).
  2. Hoffmann, M. R., Martin S. T., Choi, W. and Bahnemann, W., "Environmental Applications of Semiconductor Photocatalysis," Chem. Rev., 95, 69-96(1995). https://doi.org/10.1021/cr00033a004
  3. Malato, S., Fernadez-Ibanez, P., Maldonado, M. I., Blanco, J. and Gernjak, W., "Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends," Catalysis Today, 147, 1-59(2009). https://doi.org/10.1016/j.cattod.2009.06.018
  4. Bahnemann, D., "Photocatalytic water treatment:solar energy applications," Solar Energy Mater., 77, 445-459(2004). https://doi.org/10.1016/j.solener.2004.03.031
  5. Alpert, D. J., Sprung, J. L., Pacheco, J. E., Prairie, M. R., Reilly, T. A., Milne, T. A., and Nimlos, M. R., "Sandia national laboratories's work in solar detoxification of hazardous wastes," Solar Energy Mater., 25, 594-607(1991).
  6. Bockelmann, D., Weichgrebe D, Goslich, R. and Bahnemann, D. W., "Concentrating vs non-concentrating reactors for solar water detoxification," Solar Energy Mater. So. Cells, 38, 441-451(1995). https://doi.org/10.1016/0927-0248(95)00005-4
  7. Malato, S., Blanco, J., Campos, A., Caceres, J., Guillard, C., Herrmann, J. M. and Fernandaze-Alba, A. R., "Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale," Appl. Cat. B: Environ., 42, 349-357(2003). https://doi.org/10.1016/S0926-3373(02)00270-9
  8. Goswami, D. Y., "Engineering of solar photocatalytic detoxification and disinfection," Adv. Solar Energy, In: Boer, K.W. (Ed.), 10, 165-210(1995).
  9. Konstantinou, I. K. and Albanis, T. A., "Photocatalytic transformation of peticides in aqueous titanium dioxide suspensions using artificail and solar light: intermediates and degradation pathway," Appl. Catal. B: Environ., 42, 319-335(2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  10. Malato, S., Balanco, J., Vidal, A. and Richter, C., "Photocatalysis with solar energy at a pilot-plant scale:an overview," Appl. Catal. B:Environ., 37, 1-15(2002a). https://doi.org/10.1016/S0926-3373(01)00315-0
  11. Fernadez-Ibanez, P., Blanco, J., Malato, S. and Nieves, F. J., "Application of the colloidal stability of TiO2 particles for recovery and re use in solar photocatalysis," Water Res., 37, 3180-3188(2003). https://doi.org/10.1016/S0043-1354(03)00157-X
  12. Blanco, J., Malato, S., Fernandez, P., Vidal, A., Morales, A., Trincado, P., Oliveira, J. C., Minero, C., Mussci, M., Casalle, C. and Brunotte, M., "Compound parabolic concentrator technology development to commercial solar detoxification applications," Solar Energy, 67(4-6), 317-330(1999). https://doi.org/10.1016/S0038-092X(00)00078-5
  13. Calza, P., Minero, C. and Pelizzetti, E., "Photocatalytic assited hydrolysis of chlorinated methanes under anaerobic conditions," Environ. Sci. Technol., 31, 2198(1997a). https://doi.org/10.1021/es960660x
  14. Wu, C. H. and Yu, C. H., "Effect of $TiO_{2}$ dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/$TiO_{2}$ system," J. Hazard. Mater., 169, 1179-1183 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.064
  15. Panchangam, S. C., Lin, A. Y., Tsai, J. and Lin, C., "Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid," Chemosphere, 75, 654-660(2009). https://doi.org/10.1016/j.chemosphere.2008.12.065
  16. Hufschmidt, D., Bahnemann, D., Testa, J. J., Emilio, C. A. and Litter, M. I., "Enhancement of the photocatalytic activity of various $TiO_{2}$ materials by platinisation," J. Photochem. Photobiol. A, 148(1), 223-231(2002). https://doi.org/10.1016/S1010-6030(02)00048-5
  17. Agrios, A. G. and Pichat, P., "Recombination rate of photogenerated charges versus surface area: Opposing effects of $TiO_{2}$ sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water," J. Photochem. Photobiol. A, 180, 130-135(2006). https://doi.org/10.1016/j.jphotochem.2005.10.003
  18. 류정호, 최원용, "산화티타늄 광촉매 활성의 비일관성," 대한공업화학회지, 18(4), 371-375(2007).