주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts

  • 박종성 (육군3사관학교 화학환경과학과) ;
  • 허남국 (육군3사관학교 화학환경과학과)
  • Park, Jong-Sung (Department of Chemistry and Environmental Sciences, Korea Army Academy) ;
  • Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy)
  • 투고 : 2010.04.28
  • 심사 : 2010.07.20
  • 발행 : 2010.07.31

초록

최근 초음파를 이용한 유기오염물질의 분해 연구가 진행 중이며, 보다 향상된 초음파 조건을 찾는 연구가 주목을 받고 있다. 본 연구에서는 초음파에 의한 분해 대상물질로 나프탈렌 및 페놀을 선정하여 다양한 주파수(28 kHz, 580 kHz, 1,000 kHz) 및 보조제($TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, Cu) 첨가 효과를 비교 분석하여 초음파 처리 시스템의 최적 분해효율 조건을 확인하였다. 주파수 변화에 따른 초음파 분해효율은 나프탈렌과 페놀 모두에서 580 kHz가 가장 우수한 효율을 보였으며, OH 라디칼 역시 동일 주파수에서 가장 많이 발생한 점을 미루어 볼 때, 580 kHz 근처의 초음파 영역에서 최적의 열분해 및 산화분해를 일으킬 수 있는 공동현상 조건이 형성된다는 것을 확인하였다. 100 mg/L의 다양한 보조제를 첨가하여 초음파 분해효율을 비교한 결과 $FeSO_4$의 분해효율 및 $k_1$값이 무첨가 초음파 반응에 비해 약 1.8배씩 우수하게 조사되었으며, 이것은 초음파와 펜톤 반응이 연계되어 OH 라디칼 생성을 촉진시켜 대상물질의 산화분해를 향상시킨 것으로 판단된다. 그러나 초음파와 펜톤 연계시스템은 배치식 조건에서만 제한적으로 적용 가능할 것이며, 연속식 초음파 시스템에서는 철의 손실, 반응조의 부식 및 새로운 오염물질을 발생시키는 문제를 야기할 수 있다. 이에 반해 $TiO_2$를 첨가한 초음파 분해속도가 무첨가 반응보다 약 20% 이상 향상된 점을 감안할 때, 초음파와 연계된 연속식 처리 공정에서는 $TiO_2$가 효과적인 보조제로 사용될 수 있을 것이다.

The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

키워드

참고문헌

  1. ATSDR, "Toxicological profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene," U.S. Department of Health And Human Services Public Health Service(2005).
  2. EC-JRC, "European Chemicals Bureau. European Union Risk Assessment Report, naphthalene," European Commission Joint Research Centre, EUR 20763 EN, 1st priority List, Vol. 33(2003).
  3. Wikipedia, http://en.wikipedia.org/wiki/Naphthalene(2008).
  4. National Tap Water Quality Database, http://www.ewg.org/tapwater/contaminants/contaminant.php?contamcode=2248(2008).
  5. Lair, A., Ferronato, C., Chovelon, J. M. and Herrmann, J. M., "Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions," J. Photochem. Photobiol. A: Chemistry, 193, 193-203(2008). https://doi.org/10.1016/j.jphotochem.2007.06.025
  6. Uberoi, V. and Bhattacharya, S. K. "Toxicity and degradability of nitrophenols in anaerobic systems," Water Environ. Res., 69, 146-156(1997). https://doi.org/10.2175/106143097X125290
  7. Wikipedia, http://ko.wikipedia.org(2008).
  8. Namkung, K. C., Burgess, A. E., Bremner, D. H. and Staines, H., "Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects," Ultrason. Sonochem, 15, 171-176(2008). https://doi.org/10.1016/j.ultsonch.2007.02.009
  9. Bremner, D. H., Burgess, A. E., Didier, H. and Namkung, K. C., "Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide," Appl. Catal. B: Environ., 63, 15-19(2006). https://doi.org/10.1016/j.apcatb.2005.09.005
  10. Molina, R., Martínez, F., Melero, J. A., Bremner, D. H. and Chakinala, A. G., "Mineralization of phenol by a heterogeneous $ultrasound/Fe-SBA-15/H_2O_2$ process: Multivariate study by factorial design of experiments," Appl. Catal. B: Environ., 66, 198-207(2006). https://doi.org/10.1016/j.apcatb.2006.03.015
  11. Gogate, P. R., Mujumdara, S., Thampib, J., Wilhelm, A. M. and Pandit, A. B., "Destruction of phenol using sonochemical reactors: scale up aspects and comparison of novel configuration with conventional reactors," Sep. Purif. Technol., 34, 25-34(2004). https://doi.org/10.1016/S1383-5866(03)00171-0
  12. Psillakis, E., Goula, G., Kalogerakis, N. and Mantzavinos, D., "Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation," J. Hazard. Mater., 108, 95-102(2004). https://doi.org/10.1016/j.jhazmat.2004.01.004
  13. Park, J. K., Hong, S. W. and Chang, W. S., "Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation," Environ. Technol., 21, 1317-1323(2000). https://doi.org/10.1080/09593332108618162
  14. 박종성, 박소영, 오재일, 정상조, 이민주, 허남국, "초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교," 대한환경공학회지, 31(2), 79-89(2009).
  15. Vassilakis, C., Pantidou, A., Psillakis, E., Kalogerakis, N. and Mantzavinos, D., "Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability," Water Res., 38, 3110-3118(2004). https://doi.org/10.1016/j.watres.2004.04.014
  16. Entezari, M. H. and Pretrier, C., "A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols," Environ. Technol., 21, 1317-1323(2000). https://doi.org/10.1080/09593332108618162
  17. Park, J. K., Hong, S. W. and Chang, W. S., "Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation," Environ. Technol., 10, 241-246(2003).
  18. 임명희, 손영규, 양재근, 김지형, "초음파로 페놀 분해 시염소계화합물의 첨가와 음향 강도의 영향," 한국물환경학회지, 24(1), 118-122(2008).
  19. Adewuyi, Y. G., "Sonochemistry: Environmental science and engineering applications," Ind. Eng. Chem. Res., 40, 4681-4715(2001). https://doi.org/10.1021/ie010096l
  20. Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H. and Maeda, Y., "Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates," Ultrason. Sonochem., 15, 478-483(2008). https://doi.org/10.1016/j.ultsonch.2007.06.010
  21. Adewuyi, Y. G., "Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water," Environ Sci Technol., 10, 3409-20(2005).
  22. Chand, R., Ince, N.H., Gogate, P.R., Bremner D.H., "Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals," Sep. Purif. Technol., 67, 103-109(2009). https://doi.org/10.1016/j.seppur.2009.03.035
  23. Chen, Y. and Smirniotis, P., "Enhancement of Photocatalytic Degradation of Phenol and Chlorophenols by Ultrasound," Ind. Eng. Chem. Res., 41, 5958-5965(2002). https://doi.org/10.1021/ie020415o
  24. Qadir, L. R., Osburn-Atkinson, E. J., Swider-Lyons, K. E., Cepak, V. M. and Rolison, D. R., "Sonochemically induced decomposition of energetic materials in aqueous media," Chemosphere, 50, 1107-1114(2003). https://doi.org/10.1016/S0045-6535(02)00770-1
  25. Entezari, M. H., Pretrier, C. and Devidal, P., "Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor," Ultrason. Sonochem., 10, 103-108(2003). https://doi.org/10.1016/S1350-4177(02)00136-0
  26. Nalini Vijaya Laxmia, P., Sarithaa, P., Rambabua, N., Himabindua, V. and Anjaneyulub. Y., "Sonochemical degradation of 2chloro-5methyl phenol assisted by $TiO_2\;and\;H_2O_2$," J. Hazard. Mater., 174, 151-155(2010). https://doi.org/10.1016/j.jhazmat.2009.09.029
  27. Kang, J. W., Hung, H. M. and Lin, A., Hoffmann, M.R., "Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of $O_3,\;H_2O_2$, frequency, and power density," Environ. Sci. Technol., 33, 3199-3205(1999). https://doi.org/10.1021/es9810383
  28. Jiang, Y., Petrier, C. and Waite, T.D., "Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency," Ultrason. Sonochem., 13, 415-422(2006). https://doi.org/10.1016/j.ultsonch.2005.07.003
  29. NLM, United State National Library Medicine, http://www.toxnet.nlm.nih.gov.
  30. Nomura, H., Koda, S., Yasuda, K. and Kojima, Y., "Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin," Ultrason. Sonochem., 3, S153-S156(1996). https://doi.org/10.1016/S1350-4177(96)00020-X
  31. Bremner, D. H., Burgess, A. E., Didier, H. and Namkung, K. C., "Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide," Applied Catalysis B: Environmental, 63, 15-19(2006). https://doi.org/10.1016/j.apcatb.2005.09.005
  32. Park, J., Her, N. and Yoon Y., "Sonochemical degradation of chlorinated phenolic compounds in water: physicochemical properties of compounds on degradation," Water. Air. Soil Poll., in press(2010).
  33. 이민주, 오재일, "다중 초음파 조사 반응조에서의 TCE의 초음파 분해," 대한환경공학회지, 31(10), 873-882(2009).