HPLC-MS/MS Detection and Sonodegradation of Bisphenol A in Water

HPLC-MS/MS를 이용한 Bisphenol A 분석 및 초음파에 의한 분해 특성 조사

  • Park, Jong-Sung (Department of Chemistry and Environmental Sciences, Korea Army Academy) ;
  • Yoon, Yeo-Min (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy)
  • 박종성 (육군3사관학교 화학환경과학과) ;
  • 윤여민 (미국사우스캐롤라이나대학교 토목환경공학과) ;
  • 허남국 (육군3사관학교 화학환경과학과)
  • Received : 2010.05.04
  • Accepted : 2010.06.29
  • Published : 2010.06.30

Abstract

The optimal conditions for the analysis of BPA by HPLC-MS/MS was investigated and the ultrasound degradation capacity of the BPA, with the goal to establish the proper directions for analyzing infinitesimal quantities of BPA by HPLC-MS/MS was examined. The MDL and LOQ of BPA analyzed by HPLC-MS/MS were measured 0.13 nM and 1.3 nM respectively, its sensitivity about 620 and 32 times greater than HPLC-UV (MDL: 81.1 nM, LOQ: 811 nM) and FLD (MDL: 4.6 nM, LOQ: 46 nM). In other words, the new method enables the analysis of BPA with the accuracy up to one 1,180th of the amount specified in U.S. EPA guideline for drinking water. Degradation rate of BPA by ultrasound measured over 95% under 580 kHz and 1000 kHz frequency within 30 minutes of treatment, whereas the rate showed some decrease at 28 kHz frequency. At 580 kHz of ultrasound has proven to be the most effective among others at degradation rate and $k_1$ value, so we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. With the addition of 0.01 mM of $CCl_4$, BPA with the initial concentration of 1 ${\mu}M$ was degraded by more than 98% within 30 minutes, the $k_1$ value measured 5 minutes and 30 minutes into the experiment both showed increases by 1.4 and 1.1 times, respectively, compared with BPA without $CCl_4$. It is also found that the main degradation mechanism of BPA by ultrasound is oxidization process by OH radical, based on the fact that the addition of 10 mM of t-BuOH decreased the rate of BPA degradation by around 60%. However, 33% of BPA degradation rate obtained with the addition of t-BuOH implies further degradation done by pyrolysis or other sorts of radical beside OH radical.

본 연구는 극미량의 BPA 분석법을 정립하기 위하여 HPLC-MS/MS를 이용한 BPA 분석 조건을 개발하였고, 초음파를 이용한 BPA의 분해 특성을 조사하였다. HPLC-MS/MS에 의한 BPA의 MDL과 LOQ는 각각 0.13 nM과 1.3 nM로 조사되었는데, 이는 기존의 HPLC-UV (MDL: 81.1 nM, LOQ: 811 nM) 및 FLD (MDL: 4.6 nM, LOQ: 46 nM) 보다 약 620배 및 35배 우수하였으며, U.S. EPA의 음용수 권고기준(1.53 ${\mu}M$ 혹은 350 ${\mu}g/{\ell}$)의 약 1,180배 이하까지 정량분석이 가능하였다. 초음파 조사에 따른 BPA의 분해효율은 저주파(28 kHz)를 제외한 중?고주파 조건(580 and 1000 kHz)에서 반응 30분 이내에 95%이상 제거되었다. 특히 BPA의 분해효율 및 k1의 결과는 580 kHz에서 가장 우수하였는데, 이는 580 kHz 근처의 주파수 영역에서 최적의 초음파 공동현상 및 열분해/산화분해가 일어남을 알 수 있었다. 0.01 mM의 $CCl_4$를 첨가하여 분해효율을 측정한 결과 30분 이내에 BPA 초기농도(1 ${\mu}M$)의 98% 이상까지 제거되었으며, 반응 초기(5분)와 후기(30분)의 $k_1$값은 무첨가 반응에 비해 각각 1.4배 및 1.1배씩 증가하였다. 10 mM의 t-BuOH이 첨가된 결과 무첨가 반응에 비해 약 60% 이상 BPA 분해효율이 감소한 것을 감안할 때 BPA의 주된 초음파 기전은 OH 라디칼에 의한 산화분해임을 알 수 있었다. 그러나 t-BuOH이 첨가된 반응시간 동안(30분) 약 33%의 BPA가 분해가 일어난 것은 OH 라디칼 뿐 아니라 열분해 및 기타 라디칼 등에 의한 분해가 진행되었을 것으로 판단된다.

Keywords

References

  1. Lawrence, H. K., "Environmental Endocrine Disruptors," John Wiley & Sons, 261-270(1997).
  2. 이명희, 김종향, 허종수, 박정웅, "자외선 에너지를 이용한 내분비계장애물질인 비스페놀-A의 분해," 대한환경공학회 춘계학술발표회 논문집(II), 303-306(2001).
  3. Lee, H. J., Chattopadhyay, S., Gong, E. Y., Ahn, R. S., and Lee, K., "Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor," Toxicol. Sci., 75, 40-46 (2003). https://doi.org/10.1093/toxsci/kfg150
  4. 황갑수, "물벼룩을 이용한 bisphenol A의 급성독성 평가," 한국환경보건학회지, 33(5), 392-396(2007).
  5. 김혜리, 이윤진, 박선구, 남상호, "정수처리공정에서 bisphenol-A의 제거에 관한 연구," 한국환경위생학회지, 30(1), 59-65(2004).
  6. Guo, Z. and Feng, R., "Ultrasonic irradiation-induced degradation of low concentration BPA in aqueous solution," J. Hazard. Mater. 163, 855-860(2009). https://doi.org/10.1016/j.jhazmat.2008.07.038
  7. Zhang, H., Yamada, H. and Tsuno, H., "Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control," Environ. Sci. Technol. 42, 3375-3380(2008). https://doi.org/10.1021/es702714e
  8. Gultekin, I. and Ince, N. H., "Ultrasonic destruction of bisphenol-A: The operating parameters," Ultrason. Sonochem., 15, 524-529(2008). https://doi.org/10.1016/j.ultsonch.2007.05.005
  9. Sajiki, J., "Decomposition of BPA by radical oxygen," J. Environ. Int. 27, 315-320(2001). https://doi.org/10.1016/S0160-4120(01)00062-9
  10. Yoon, Y., Westerhoff, P., Snyder, S. A., and Esparaza, M., "HPLC-fluorescence detection and adsorption of bisphenol A, 17b-estradiol, and 17a-ethynyl estradiol on powdered activated carbon," Water Res., 37, 3530-3537(2003). https://doi.org/10.1016/S0043-1354(03)00239-2
  11. Baugros, J.B., Giroud, B., Dessalces, G., Grenier-Loustalot, M.F., and Cren-Olive, C., "Multiresidue analytical methods for the ultra-trace quantification of 33 priority substances present in the list of REACH in real water samples," Anal. Chim. Acta., 607 (2), 191-203(2008). https://doi.org/10.1016/j.aca.2007.11.036
  12. Adewuyi, Y. G., "Sonochemistry: Environmental science and engineering applications," Ind. Eng. Chem. Res., 40, 4681-4715(2001). https://doi.org/10.1021/ie010096l
  13. Riesz, P., Kondo, T., and Krishna, C. M., "Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r and spin trapping studies," Ultrasonics, 28, 295-303(1990). https://doi.org/10.1016/0041-624X(90)90035-M
  14. Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H., and Maeda, Y., "Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates," Ultrason. Sonochem. 15, 478-483(2008). https://doi.org/10.1016/j.ultsonch.2007.06.010
  15. Psillakis, E., Goula, G., Kalogerakis, N., and Mantzavinos, D., "Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation," J. Hazard. Mater., 108, 95-102(2004). https://doi.org/10.1016/j.jhazmat.2004.01.004
  16. Park, J. K., Hong, S. W., and Chang, W. S., "Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation," Environ. Technol., 21, 1317-1323(2000). https://doi.org/10.1080/09593332108618162
  17. 박종성, 박소영, 오재일, 정상조, 이민주, 허남국, "초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교," 대한환경공학회지, 31(2), 79-89(2009).
  18. Vassilakis, C., Pantidou, A., Psillakis, E., Kalogerakis, N., and Mantzavinos, D., "Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability," Water Res., 38, 3110-3118(2004). https://doi.org/10.1016/j.watres.2004.04.014
  19. Entezari, M. H., and Pretrier, C., "A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols," Environ. Technol., 21, 1317-1323(2000). https://doi.org/10.1080/09593332108618162
  20. Park, J. K., Hong, S. W., and Chang, W. S., "Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation," Environ. Technol., 10, 241-246(2003).
  21. 임명희, 손영규, 양재근, 김지형, "초음파로 페놀 분해 시 염소계 화합물의 첨가와 음향 강도의 영향," 한국물환경학회지, 24(1), 118-122(2008).
  22. Pétrier, C., Torres, P. R., Combet, E., Sarantakos, G., Baup, S., and Pulgarin, C., "Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions," Ultrason. Sonochem., 17, 111-115(2010). https://doi.org/10.1016/j.ultsonch.2009.05.010
  23. ACS committee on Environmental improvement and subcommittee on environmental analytical chemistry, "Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry," Anal. Chem., 52, 2242-2249(1980). https://doi.org/10.1021/ac50064a004
  24. 박종성, 오재일, 정상조, 최윤대, 허남국, "HPLC-FLD와 MSD를 이용한 지하수 중 나프탈렌 TNT의 미량 분석법 개발," 지하수 토양환경학회지, 14(6), 35-44(2009).
  25. US EPA, Office of Water; "Federal-State Toxicology and Risk Analysis Committe(FSTRAC). Summary of Sate and Federal Drinking Water Standards and Guidelines(11/93),"
  26. Mohapatra, D. P., Brar, S. K., Tyagi, R. D., and Surampalli, R. Y., "Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge-fate of bisphenol A," Chemos, 78, 923-941(2010). https://doi.org/10.1016/j.chemosphere.2009.12.053
  27. Jiang, Y., Petrier, C., and Waite, T.D., "Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency," Ultrason. Sonochem., 13, 415-422(2006). https://doi.org/10.1016/j.ultsonch.2005.07.003
  28. 박종성, 허남국, "주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교," 대한환경공학회, Preceeding (2010).
  29. 이민주, 오재일, "다중 초음파 조사 반응조에서의 TCE의 초음파 분해," 대한환경공학회지, 31(10), 873-882(2009).
  30. Chand, R., Ince, N.H., Gogate, P.R., Bremner D.H., "Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals," Sep. Purif. Technol. 67, 103-109(2009). https://doi.org/10.1016/j.seppur.2009.03.035
  31. Kang, J. W., Hung, H. M., and Lin, A., Hoffmann, M.R., "Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of O3, H2O2, frequency, and power density," Environ. Sci. Technol., 33, 3199-3205(1999). https://doi.org/10.1021/es9810383
  32. Torres, R.A., Petrier, C., Combet, E., Carrier, M., Pulgarin, C., "Ultrasonic cavication applied to the treatment of BPA. Effect of sonochemical parameters and analysis of BPA by-products," Ultrason. Sonochem. 15, 605-611(2008).. https://doi.org/10.1016/j.ultsonch.2007.07.003
  33. Fisher, C. H., Hart, E. J., and Henglein, A, "H/D isotope exchange in the D2-H2O system under the influence of ultrasoud," J. Phys. Chem. 90, 222-224(1986). https://doi.org/10.1021/j100274a003
  34. Lee, M. and Oh, J., "Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution," Ultrason. Sonochem., 17, 207-212(2010). https://doi.org/10.1016/j.ultsonch.2009.06.018
  35. Buxton, G. V., Greenstock, W. P., Helman, A. B., Ross, W., and Tsang, "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution," J. Phys. Chem. Ref., 17, 513-886(1988).
  36. NLM, United State National Library Medicine, http://www.toxnet.nlm.nih.gov.