Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater

수산물 가공폐수의 호기성 생분해도에 미치는 염분농도의 영향

  • Choi, Yong-Bum (Department of Environmental Engineering, Kangwon National University) ;
  • Kwon, Jae-Hyouk (Department of Environmental Prevention, Kangwon National University) ;
  • Rim, Jay-Myung (Department of Environmental Engineering, Kangwon National University)
  • 최용범 (강원대학교 환경공학과) ;
  • 권재혁 (강원대학교 환경방재공학과) ;
  • 임재명 (강원대학교 환경공학과)
  • Received : 2009.08.05
  • Accepted : 2010.02.24
  • Published : 2010.03.31

Abstract

The study was performed to evaluate the effects of chloride concentrations on the ultimate aerobic biodegradability and to use the result as the fundamental data for sea food wastewater treatment. When the organic removal efficiency by chloride concentrations (1,400~18,000 mg/L) was evaluated, microbes adapted to the saline at ${\leq}$ 6,000 mg/L of chloride but treatment efficiency was not improved at ${\geq}$ 12,000 mg/L of chloride because of delayed reaction time. Functional coefficient $Y_I$ of non-biodegradable soluble organic and inert material production coefficient Yp by microbe metabolism increased as chloride concentrations increased. Soluble organic matter ratio by chloride concentration (0~18,000 mg/L) was 10.8~13.1%, inert material production efficiency by microbes metabolism was evaluated as 7.0~24.6%. $NH_3$-N removal efficiencies were 96.2, 96.5, 90.2 and 90.3% using original wastewater HRT 18 hr, 6,000 mg/L chloride concentration HRT 22 hr, 12,000 mg/L chloride concentration HRT 30 hr, and 18,000 mg/L chloride concentration HRT 45 hr, respectively. Nitrification process was more sensitive to salt concentration than organic matter removal to salt concentration. Under ${\geq}$ 6,000 mg/L chloride concentration, conversion rate from $NO_s$-N to $NO_2$-N was low.

본 논문은 염분농도가 호기성 생분해도에 미치는 영향을 파악하고, 그 결과를 수산물 가중 폐수 처리 위한 기초자료로 사용하기 위하여 수행되었다. $Cl^-$농도(1,400~18,000 mg/L)에 따른 유기물 제거효율 검토결과, $Cl^-$ 6,000 mg/L 이하에서 미생물들은 염분에 적응하였으나 $Cl^-$ 12,000 mg/L 이상에서는 반응시간이 길어져도 처리효율이 개선되지 않는 것으로 조사되었다. 생물학적 분해불가능한 용존성 유기물 함유계수 $Y_I$와 미생물 신진대사에 의한 inert 물질 생성계수 Yp는 염분농도가 증가할수록 증가하였으며, $Cl^-$ 농도(0~18,000 mg/L)에 따른 용존성 유기물 비율은 10.8~13.1%로, 미생물 신진대사에 의한 inert 물질 생성비율은 7.0~24.6%로 조사되었다. $NH_3$-N 제거효율은, 원폐수는 HRT 18 hr에서 96.2%의 제거효율을 보였으나, $Cl^-$ 6,000 mg/L, HRT 22 hr에서 96.5%, $Cl^-$ 12,000 mg/L, HRT 30 hr에서 90.2%, $Cl^-$ 18,000 mg/L, HRT 45 hr에서 90.3%의 제거효율을 나타내, 질산화 과정이 유기물 제거 보다 염분농도에 더 민감한 것으로 조사되었으며, 폐수내 $Cl^-$ 6,000 mg/L 이상부터는 $NO_2$-N에서 $NO_3$-N로의 전환율도 낮게 조사되었다.

Keywords

References

  1. 박광서, "최근 국내수산물 소비동향 및 대응방안", Korea Maritime Institute, 해양수산동향, 1247(2007).
  2. 이남수, "국내 씨푸드 산업의 현황 및 전망", Korea Maritime Institute, 해양수산동향, 1245(2007).
  3. 최성애, 홍현표, 마창모, "수산업 클러스터 형성에 관한 기초연구", Korea Maritime Institute(2008).
  4. 기문봉, 김낙주, 이시진, 산업폐수처리, 동화기술(1998).
  5. Olivier Lefebve., Rene Moletta., "Treatment of organic pollution in industrial saline wastewater: a literature review", Water Research., 40, 3671-3682(2006). https://doi.org/10.1016/j.watres.2006.08.027
  6. Kincannon, D. F., and Gaudy, A. F., "Response of biological waste treatment systems to changes in salt concentrations". Biop-technol. Bioeng., 10, 483-496(1968).
  7. 문병현, 윤조희, 서규태, 김상수, "SBR에서 염분농도와 C/N비가 오염물질의 제거에 미치는 영향", 대한환경공학회지, 24(2), 251-260(2002).
  8. Ekama, G. A., and Marais G. V. R., "Procedures for Determining Influent COD fractions and the Maximum Specific Growth Rate of Heterotrophs in Activated Sludge Systems," Wat. Sci. Technol., 18, 91-114(1986).
  9. Henze, M., "Characterization of Wastewater for Modeling of Activated Sludge Process," Wat. Sci. Tech., 25(6) 1-15(1992).
  10. 한동준, 류재근, 임연택, 임재명, "생물학적 영양영류 제거를 위한 돈사폐수의 반응특성", 대한환경공학회지, 20(3), 371-384(1998).
  11. Orhon, D., et al., "Biological Treatability of Dairy Wastewaters", Water. Res., 27(4), 625-633(1993). https://doi.org/10.1016/0043-1354(93)90172-E
  12. Panswad, T., and Anan, C., "Impact of high chloride wastewater on an anaerobic /anoxic/aerobic process with and without inoculation of chloride acclimated seeds", Water Res.,, 33(5), 1165 -1172(1999). https://doi.org/10.1016/S0043-1354(98)00314-5
  13. Panswad, T., and Anan, C., "Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater", Bioresour. Technol., 70, 237-243(1999). https://doi.org/10.1016/S0960-8524(99)00041-3
  14. Chen, G. H., and Wong, M. T., "Impact of increased chloride concentration on nitrifying-activated sludge cultures". J. Envrion. Eng.-ASCE., 130(2), 116-125(2004). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:2(116)
  15. Dahl, C., Sund, C., Kristensen, G. H., and Vredenbregt, L., "Combined biological nitrification and denitrification of high salinity wastewater". Water Sci. Technol., 36(2-3), 345-352(1997). https://doi.org/10.1016/S0273-1223(97)00407-1
  16. Y. W. Cui, Y. Z. Peng., te al., "Achieving biological nitrogen removal via nitrite by salt inhibition", Water Sci. & Technol., 53(6) 115-122(2006). https://doi.org/10.2166/wst.2006.183