Hypoglycemic Effects of Fruits and Vegetables in Hyperglycemic Rats for Prevention of Type-2 Diabetes

고혈압쥐의 과일과 야채의 섭취에 따른 저혈당 효과

  • Received : 2010.03.15
  • Accepted : 2010.06.10
  • Published : 2010.10.31

Abstract

An in vivo oral glucose tolerance test (OGTT) was performed on hyperglycemic male Sprague-Dawley rats to assess the effect of fruits and vegetables ($1g{\cdot}kg^{-1}$ body weight) on blood glucose levels (${\Delta}BGLs$) at different time intervals of 0, 5, 15, 30, 60, 90 and 120 min. The areas under glucose curve (${\Delta}AUCs$) were calculated at 120 min of OGTT by trapezoid method. Total phenolic content (TPC) and anti-oxidant activity (AOA) of fruits and vegetables were assayed in vitro by Folin Ciocalteu and DPPH (2, 2-diphenyl-1-picrylhydrazyl) methods, respectively. At the end of the experiment the correlations among the parameters TPC, AOA and ${\Delta}AUC$ was estimated by Pearson's correlations. Among fruit crops, tangerine, plum, grape and pear and among vegetables, blue leaf mustard, cabbage, chicory, broccoli and others exhibited significant hypoglycemic effects by reducing ${\Delta}BGLs$ with significant ${\Delta}AUC$. The effective ${\Delta}AUC$ ranged from $5548.2{\pm}462.1$ to $3823.3{\pm}282.0mg-min{\cdot}dL^{-1}$. The TPC and AOA ranged from $0.063{\pm}0.00$ to $0.913{\pm}0.14mg{\cdot}g^{-1}$ GAE and $01.05{\pm}0.08$ to $75.46{\pm}0.06%$, respectively. Overall, six fruits and fifteen vegetables exhibited higher TPC and one fruit and four vegetables exhibited higher AOA. There was a better correlation among TPC, AOA and ${\Delta}AUC$ of fruits and TPC & AOA of vegetables. We report that hypoglycemically significant fruits and vegetables investigated in this study have pharmacological importance which reduced ${\Delta}BGLs$ through insulin like activity and AOA in prevention of type-2 diabetes.

고혈당 쥐에(Sprague-Dawley rat) 각종 야채와 과일을 섭취(1g/kg body weight) 한 후 oral glucose tolerance test(OGTT)을 실시하였다. 0분, 5분, 15분, 30분, 60분, 90분, 120분 후에 blood glucose levels(${\Delta}BGLs$)을 측정하였다. Under glucose curve(${\Delta}AUCs$)은 OGGT의 120분 후 계산하였으며 과일과 야채의 Total phenolic content(TPC)과 anti-oxidant activity (AOA)는 Folin Ciocalteu and DPPH(2, 2-diphenyl-1-picrylhydrazyl)을 통하여 특정하였다. 실험의 마지막은 Pearson's correlations을 사용하여 TPC, AOA and ${\Delta}AUC$ 간의 상관관계를 분석하였으며 모든 통계수치는 unpaired Student's t-test를 실시하였다. 과일중에서는 탠저린, 자두, 배가 저혈당 효과를 보였으며 야채중에서는 푸른잎 머스타드와 양배투, 치커리, 브로콜리가 감소된 ${\Delta}BGLs$와 유효한 ${\Delta}AUC$수치를 보여서 저혈당 효과에 효과적이었다. 효과적인 ${\Delta}AUC$의 범위는 $5548.2{\pm}462.1$에서부터 $3823.3{\pm}282.0mg{\cdot}min/dL$이며, TPC와 AOA의 범위는 $0.063{\pm}0.00$에서부터 $0.913{\pm}0.14mg/g$ GAE, $01.05{\pm}0.08$에서부터 $75.46{\pm}0.06%$이다. 전체적으로 과일의 50%와 양체의 60-65%가 높은 TPC와 효과적인 AOA의 수치를 나타내었다. 우리는 이번 연구를 통하여 저혈당 효과가 있어 제2형 당뇨를 예방할 수 있는 과일과 채소류를 선별할 수 있었다.

Keywords

References

  1. Allison, D.B., F. Paultre, C. Maggio, N. Mezzitis, and F.X. Pi-Sunyer. 1995. The use of areas under curves in diabetes research. Diabetes Care 18:245-50. https://doi.org/10.2337/diacare.18.2.245
  2. Anderson, R.A., C.L. Broadhurst, M.M. Polansky, W.F. Schmidt, A. Khan, V.P. Flanagan, N.W. Schoene, and D.J. Graves. 2004. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin like biological activity. J. Agric. Food. Chem. 52:65-70. https://doi.org/10.1021/jf034916b
  3. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1202. https://doi.org/10.1038/1811199a0
  4. Chaturvedi, P., S. George, M. Milinganyo, and Y.B. Tripathi. 2004. Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phytother. Res. 18: 954-956. https://doi.org/10.1002/ptr.1589
  5. Espin, J.C., C. Soler-Rivas, H.J. Wichers, and C. Garcia-Viguera. 2000. Anthocyanin based natural colorants: a new source of antiradical activity for food stuff. J. Agric. Food. Chem. 48:1588-1592. https://doi.org/10.1021/jf9911390
  6. Hartman, I. 2008. Insulin analogs: impact on treatment success, satisfaction, quality of life, and adherence. Clin. Med. Res. 6:54-67. https://doi.org/10.3121/cmr.2008.793
  7. Jayaprakasam, B., S.K. Vareed, L.K. Olson, and G. Nair Muraleedharan. 2005. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food. Chem. 53:28-31. https://doi.org/10.1021/jf049018+
  8. King, H., R.E. Aubert, and W.H. Herman. 1998. Global burden of diabetes, 1995-2025. Prevalence, numerical estimates, and protection. Diabetes Care 211:1414-1431.
  9. Kuroe, A., M. Fukushima, M. Usami, M. Ikeda, Y. Nakai, A. Taniguchi, T. Matsuura, H. Suzuki, T. Kurose, K. Yasuda, Y. Yamada, and Y. Seino. 2003. Impaired $\beta$-cell function and insulin sensitivity in Japanese subjects with normal glucose tolerance. Diabetes Res. Clin Pract. 59:71-77. https://doi.org/10.1016/S0168-8227(02)00177-8
  10. Lee, S.E., H.J. Hwang, J.-S. Ha, H.-S. Jeong, and J.H. Kim. 2003. Screening of medicinal plant extracts for antioxidant activity. Life. Sci. 73:167-169. https://doi.org/10.1016/S0024-3205(03)00259-5
  11. Liu, S., M. Serdula, S.-J. Janket, R.N. Cook, H.W. Sesso, W.C. Willett, J.E. Manson, and J.E. Buring. 2004. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care 27:2993-2996. https://doi.org/10.2337/diacare.27.12.2993
  12. Lu, J., Y.–K. Chan, G.D. Gamble, S.D. Poppitt, A.A. Othman, and G.J.S. Cooper. 2007. Triethylenetetramine and metabolites: Levels in relation to copper and zinc excretion in urine of healthy volunteers and type 2 diabetic patients. Drug. Metab. Dispos. 35:221-227.
  13. Mari, A., G. Pacini, E. Murphy, B. Ludvik, and J.J. Nolan. 2001. A model-based method for assessing insulin sensitivity from oral glucose tolerance test. Diabetes Care 24:539-548. https://doi.org/10.2337/diacare.24.3.539
  14. Marles, R.J. and N.R. Farnsworth. 1994. Plants as sources of antidiabetic agents. Econ. Med. Plant. Res. 6:149-187.
  15. Pfeiffer, A.F.H. 2003. Oral hypoglycemic agent: Sulfonylureas and meglitinides. In text book of type-2 diabetes. Goldstein B.J. and D. Muller-Wieland (eds.), Martin Dunitz Ltd., London, UK.
  16. Prince, P.S.M. and N. Kamalakkannan. 2006. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and glyconeogenic enzymes. J. Biochem. Mol. Toxicol. 20:96-102. https://doi.org/10.1002/jbt.20117
  17. Rizvi, S.I., M.A. Zaid, R. Anis, and N. Mishra. 2005. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol. 32:70-75. https://doi.org/10.1111/j.1440-1681.2005.04160.x
  18. Ross, S.A., E.A. Gulve, and M. Wang. 2004. Chemistry and biochemistry of diabetes. Chem. Rev. 104:1255-1282. https://doi.org/10.1021/cr0204653
  19. Sadasivam, S. and A. Manikan. 1992. In: Biochemical methods for Agricultural sciences. p.187, Wiley Eastern, New Delhi, India.
  20. Spitller, G. 2000. Are lipid peroxidation processes induced by chances in the cell wall structure and how are those processes connected with disease. Med. Hypotheses. 60:69-83.
  21. Stumvoll, M., A. Mitrakou, W. Pimenta, T. Jenssen, H. Yki- Järviven, T.W. VanHaeften, W. Renn, and J. Gerich. 2000. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 23:295-301. https://doi.org/10.2337/diacare.23.3.295
  22. Tsuda, T., F. Horio, K. Uchida, H. Aoki, and T. Osawa. 2003. Dietary cyaniding 3-O-$\beta$ D glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 133:2125-2130. https://doi.org/10.1093/jn/133.7.2125
  23. Valiathan, M.S. 1998. Healing plants. Curr. Sci. 75:1122-1126.
  24. Yamazaki, K., N. Yasuda, T. Inoue, E. Yamamoto, Y. Sugaya, T. Nagakur, M. Shinoda, R. Clark, T. Saeki, and I. Tanaka. 2007. Effects of the combination of a Dipeptidyl peptidase IV inhibitor and an insulin secretagogue on glucose and insulin levels in mice and rats. Pharmacol. Exp. Therap. 320:738-746.