Isolation of a Leucoanthocyanidin Dioxygenase (LDOX) Gene from a Spray-type Chrysanthemum (Dendranthema × grandiflorum) and Its Colored Mutants

스프레이형 국화와 화색변이체로부터 Leucoanthocyanidin dioxygenase (LDOX) 유전자의 분리

  • Chung, Sung-Jin (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Geung-Joo (Department of Horticultural Science, Mokpo National University) ;
  • Lee, Hye-Jung (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Baek (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Sub (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kang, Si-Yong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 정성진 (한국원자력연구원 정읍방사선과학연구소) ;
  • 이긍주 (목포대학교 원예과학과) ;
  • 이혜정 (한국원자력연구원 정읍방사선과학연구소) ;
  • 김진백 (한국원자력연구원 정읍방사선과학연구소) ;
  • 김동섭 (한국원자력연구원 정읍방사선과학연구소) ;
  • 강시용 (한국원자력연구원 정읍방사선과학연구소)
  • Received : 2010.04.29
  • Accepted : 2010.07.05
  • Published : 2010.10.31

Abstract

A full-length cDNA and genomic DNA of a $leucoanthocyanidin$ $dioxygenase$ ($DgLDOX$) gene was isolated from the petals of chrysanthemum 'Argus', and comparative features of the gene among three flower color mutants derived from a gamma-ray mutagenesis were characterized. The cDNA coding region of the gene was 1068 bp and was translated into 356 amino acids accordingly. The genomic DNA size was 1346 bp for 'Argus', while three mutants revealed ranges of 1363 to 1374 bp. A single intron between two coding exons for the $DgLDOX$ gene was found, of which size was 112 bp for 'Argus', but 128 or 137 bp for three flower color mutants, indicating that a genomic insertion in the intron occurred during the gamma-ray mutagenesis. DNA blot analysis revealed the $DgLDOX$ gene presenting as a single copy in the chrysanthemum genome. The $DgLDOX$ gene was expressed in both 'Argus' of light-pink color and two purple color mutants (AM1 and AM3) but had very weak expression in only white color mutant (AM2). The results demonstrated that variations in the flower color of the mutants might be associated with changes in the amino acid moieties in the coding exons or fragment insertions in the intron of the $DgLDOX$ gene, which potentially resulted in less expression of the gene in the white colored mutant.

스프레이 국화 'Argus'의 꽃잎으로부터 $DgLDOX$의 전장 cDNA와 genomic DNA를 분리하였고, 감마선 변이원으로부터 유래된 3가지 화색변이체 사이의 다양한 유전자 특성들을 밝혀냈다. cDNA 영역은 1068bp이고 356 amino acid로 변환되었다. Genomic DNA의 크기는 'Argus'에서 1346bp이었고, 3가지 화색 변이체에서는 1363부터 1374의 크기를 나타내었다. $DgLDOX$ 유전자는 두 개의 엑손 사이에 하나의 인트론을 갖고 있는 구조이고, 그 크기는 'Argus'에서 112bp 이지만 3가지 화색 변이체에서는 128 혹은 137bp였다. 이것은 감마선 조사에 의해 인트론 부분에 유전자가 삽입됐다는 것을 나타낸다. DNA 분석 결과 국화의 게놈 내에서는 하나의 $LDOX$ 유전자를 갖는 것이 확인되었다. $DgLDOX$ 유전자의 발현 정도를 분석한 결과, 연분홍의 'Argus'와 두 개의 보라색 변이체(AM1 and AM3) 에서 높게 발현되었으나 흰색 변이체(AM2)에서는 매우 약하게 발현되었다. 이러한 결과들은 $DgLDOX$ 유전자의 인트론에 삽입된 유전자 조각 혹은 엑손 부위의 일부 아미노산의 변화에 의해서 변이체의 화색이 변할 수 있다는 것을 보여주고 있다.

Keywords

References

  1. Abrahams, S., E. Lee, A.R. Walker, G.J. Tanner, P.J. Larkin, and A.R. Ashton. 2003. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 35:624-636. https://doi.org/10.1046/j.1365-313X.2003.01834.x
  2. Datta, S.K., P. Misra, and A.K. Mandal. 2005. In vitro mutagenesis – a quick method for establishment of solid mutant in chrysanthemum. Curr. Sci. 88:155-158.
  3. Davies, K.M., 1993. A Malus cDNA with homology to the Antirrhinum Candida and Zea A2 genes. Plant Physiol. 103:1015. https://doi.org/10.1104/pp.103.3.1015
  4. De Carolis, E., and V. De Luca. 1994. 2-oxoglutarate-dependent dioxygenase and related enzymes: biochemical characterization. Phytochem. 36:1093-1107. https://doi.org/10.1016/S0031-9422(00)89621-1
  5. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761-780. https://doi.org/10.1146/annurev.arplant.57.032905.105248
  6. Harborne, J.B. and H. Baxter. 1999. The handbook of natural flavonoids. John Wiley, Chichester, p. 196-201.
  7. Hirner, A.A., S. Veit, and H.U. Seitz. 2001. Regulation of anthocyanin biosynthesis in UV-A-irradiated cell cultures of carrot and in organs of intact carrot plants. Plant Sci. 161:315-322. https://doi.org/10.1016/S0168-9452(01)00408-3
  8. Hongmei, M., P. Margaret, and G. Robert. 2009. Anthocyanin regulatory/structural gene expression in Phalaenopsis. J. Amer. Soc. Hort. Sci. 134:88-96.
  9. Hoshino, A., Y. Johzuka-Hisatomi, and S. Iida. 2001. Gene duplication and mobile genetic elements in the morning glories. Gene 265:1-10. https://doi.org/10.1016/S0378-1119(01)00357-2
  10. Kim, Y.H and S.Y. Park. 2002. Identification and characterization of flavanone 3- hydroxylase (F3H) gene from Dendranthema grandiflora. J. Kor. Soc. Hort. Sci. 43:666-670.
  11. Kobayashi, S., M. Ishimaru, K. Hiraoka, and C. Honda. 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933. https://doi.org/10.1007/s00425-002-0830-5
  12. Lema-Rumińska, J. and M. Zalewska. 2005. Changes in flower colour among Lady Group of chrysanthemum$\times$ grandiflorum/ Ramat./Kitam. as a result of mutation breeding. Folia Horticulturae 17:61-72.
  13. Lucheta, A.R., A.C.O. Silva-Pinhati, A.C. Basílio-Palmieri, I.J. Berger, J. Freitas-Astúa, and M. Cristofani. 2007. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis. Genet. Mol. Biol. 30:819-831. https://doi.org/10.1590/S1415-47572007000500010
  14. Lukacin, R. and L. Britsch. 1997. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone $3\beta$-hydroxylase. Eur. J. Biochem. 249:748–757.
  15. Martin, C. and T. Gerats. 1993. The control of flower coloration. In: The Molecular Biology of Flowering, Jordan BR(ed), (CAB International, Wallingford Oxford), p. 219-255.
  16. Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, T. Yoshimoto, H. Ikeda, G. Yoshida, and M. Shibata. 2000. Flovonoid biosynthesis in white flowered Sim carnation (Dianthus caryophyllus). Sci. Hort. 84:333-347. https://doi.org/10.1016/S0304-4238(99)00140-5
  17. Matsubara, K., H. Kodama, H. Kokubun, H. Watanabe, and T. Ando. 2005. Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358:121-126. https://doi.org/10.1016/j.gene.2005.05.031
  18. Menssen, A., S. Höhmann, W. Martin, P.S. Schnable, P.A. Peterson, H. Saedler, and A. Gierl. 1990. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J. 9:3051–3057.
  19. Mol, J., E. Grotewold, and R. Koes. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3:212-217. https://doi.org/10.1016/S1360-1385(98)01242-4
  20. Nagatomi, S., A. Tanaka, H. Kato, H. Watanabe, and S. Tano. 1995. Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with 12C5+ ion beam. TIARA Annual Report, Japan 5:50–52.
  21. Nakajima, J.I., Y. Tanaka, M. Yamazaki, and K. Saito. 2001. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276:25797-25803. https://doi.org/10.1074/jbc.M100744200
  22. Nakatsuka, T., M. Nishihara, K. Mishiba, and S. Yamamura. 2005. Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci. 169:949-958. https://doi.org/10.1016/j.plantsci.2005.06.013
  23. Nissim-Levi, A., R. Ovadiar, I. Forer, and M. Oren-Shamir. 2007. Increased anthocyanin accumulation in ornamental plants due to magnesium treatment. J. Hortic. Sci. Biotech. 82:481-487 https://doi.org/10.1080/14620316.2007.11512262
  24. Noda, N., Y. Kanno, N. Kato, K. Kazuma, and M. Suzuki. 2004. Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiol. Plant. 122:305-313. https://doi.org/10.1111/j.1399-3054.2004.00407.x
  25. Ogundiwin, E.A., C.P. Peace, C.M. Nicolet, V.K. Rashbrook, T.M. Gradziel, F.A. Bliss, D.E. Parfitt, and C.H. Crisosto. 2008. Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet. Genome. 4:543-554. https://doi.org/10.1007/s11295-007-0130-0
  26. Ohyanagi, H., T. Tanaka, H. Sakai, Y. Shigemoto, K. Yamaguchi, T. Habara, Y. Fujii, B.A. Antonio, Y. Nagamura, T. Imanishi, K. Ikeo, T. Itoh, T. Gojobori, and T. Sasaki. 2006. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res. 34 (DATABASE ISSUE):D741-D744. https://doi.org/10.1093/nar/gkj094
  27. Ohmiya, A., S. Kishimoto, R. Aida, S. Yoshioka, and K. Sumitomo. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142:1193-1201. https://doi.org/10.1104/pp.106.087130
  28. Park, I.S., G.J. Lee, D.S. Kim, S.J. Chung, J.B. Kim, H.S. Song, D.H. Goo, and S.Y. Kang. 2007. Mutation Breeding of a Spray chrysanthemum 'Argus' by Gamma-ray Irradiation and Tissue Culture. Flower Res. J. 15:52-57.
  29. Pelletier, M.K., J R. Murrell, and B.W. Shirley. 1997. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in arabidopsis. Further evidence for differential regulation of "early" and "late" genes. Plant Physiol. 113: 1437-1445. https://doi.org/10.1104/pp.113.4.1437
  30. Roach, P.L., I.J. Clifton, C.M. Hensgens, N. Shibata, C.J. Schofield, J. Hajdu, and J.E. Baldwin. 1997. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387:827– 830. https://doi.org/10.1038/42990
  31. Saito, K., M. Kobayashi, Z. Gong, Y. Tanaka, and M. Yamazaki. 1999. Direct evidence for anthocyanidin synthase as a 2- oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17:181-189. https://doi.org/10.1046/j.1365-313X.1999.00365.x
  32. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  33. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. In: (2nd ed.), A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  34. Seitz, C., C. Eder, B. Deiml, S. Kellner, S. Martens, and G. Forkmann. 2006. Cloning, functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3', 5'- hydroxylase cDNAs reveals independent evolution of flavonoid 3',5'-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61:365-381. https://doi.org/10.1007/s11103-006-0012-0
  35. Seo, J.W., S.W. Kim, J.H. Kim, H.W. Cha, and J.R. Liu. 2007. Co-expression of flavonoid 3', 5'-hydroxylase and flavonoid 3'-hydroxylase accelerates decolorization in transgenic chrysanthemum petals. J. Plant Biol. 50:626-631. https://doi.org/10.1007/BF03030605
  36. Shikazono, N., Y. Yokota, S. Kitamura, C. Suzuki, H. Watanabe, S. Tano, and A. Tanaka. 2003. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455.
  37. Sparvoli, F., C. Martin, A. Scienza, G. Gavazzi, and C. Tonelli. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24:743-755. https://doi.org/10.1007/BF00029856
  38. Sudhir, K., K.V. Prasad, and M.L. Choudhary. 2006. Detection of genetic variability among chrysanthemum radiomutants using RAPD markers. Curr. Sci. 90:1108-1113.
  39. Suzuki, H., T. Nakayama, M. Yamaguchi, and T. Nishino. 2004. cDNA cloning and characterization of two Dendranthema× morifolium anthocyanin malonyltransferases with different functional activities. Plant Sci. 166:89-96. https://doi.org/10.1016/j.plantsci.2003.08.010
  40. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  41. Tanaka, A., A. Sakamoto, Y. Ishigaki, O. Nikaido, G. Sun, Y. Hase, N. Shikazono, S. Tano, and H. Watanabe. 2002. An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol. 129:64-71. https://doi.org/10.1104/pp.010894
  42. Tanaka, Y., Y. Katsumoto, F. Brugliera, and J. Mason. 2005. Genetic engineering in floriculture. Plant Cell Tissue Organ Cult. 801-24.
  43. van Harten, A.M. 1998. Mutation Breeding: Theory and Practical Applications, (London: Cambridge University Press), p. 92-94.
  44. Weiss, D., A.H. van der Luit, J.T. Kroon, J.N. Mol, and J.M. Kooter. 1993. The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene-forming enzyme. Plant Mol. Biol. 22:893-897. https://doi.org/10.1007/BF00027374
  45. Winkel-Shirley, B. 2001. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485-493. https://doi.org/10.1104/pp.126.2.485