Selection of Hypo- and Hyper-tetraploid Seedlings from Abnormal Cotyledons Seedlings Obtained during Crossing of Tetraploid Grapes (Vitis Complexes)

4배체 포도간 교배된 이상자엽실생으로부터 저·고4배체 식물의 선발

  • Received : 2010.01.28
  • Accepted : 2010.06.19
  • Published : 2010.10.31

Abstract

We observed abnormal morphology of cotyledons occurring in seedlings derived from open-pollinated and cross-pollinated tetraploid grapes and selected aneuploids, especially hypo- and hyper-tetraploid in seedlings with abnormal morphology of cotyledons. Five types of morphologically abnormal cotyledons were observed. In open-pollination of four tetraploid grapes, the frequency of abnormal cotyledons was 1.6% (49 of 3029 seeds). Percentage of aneuploids in the seedlings of abnormal cotyledons was 20.4% (10 of 49 seedlings). Aneuploids in open-pollination consisted of three (4n = 4x-2), four (4n = 4x-1), and three (4n = 4x+1) seedlings. In cross-pollination of tetraploids, the frequency of abnormal cotyledons was 3.4% (59 of 1729 seeds). Percentage of aneuploids in the seedlings with abnormal cotyledons was 22.0% (13 of 59 seedlings). Aneuploids from cross-pollination of tetraploids consisted of two (4n = 4x-2), nine (4n = 4x-1), one (4n = 4x+1), and one (4n = 4x+3) seedlings. According to the results, although the abnormal cotyledon morphology of seedlings obtained from crossing between tetraploid grapes appeared at low rate (2.3%), aneuploid seedlings occurred at high rate (22.0%); therefore, it indicated that this selection strategy might be very efficient in the initial seedling stage.

본 실험은 4배체 포도의 방임수분과 인공수분으로부터 획득된 실생으로부터 이상자엽의 형태적 특성을 조사하였고, 특히 이들 이상자엽 실생으로부터 저 고4배 식물을 선발하였다. 이상자엽은 크게 5 형태로 구분되었다. 4배체 4품종의 방임수분 실생에서 이상자엽의 발생빈도는 1.6%로 조사되었고, 이상자엽실생 중 이수체 발생율은 20.4%이었다. 4배체 품종의 방임수분에서 얻어진 이수체 식물은 3개체(4n = 4x-2 = 74), 4개체(4n = 4x-1 = 75), 3개체(4n = 4x+1 = 77)로 총 10개체이었다. 4배체 16품종간 교배실생에서 이상자엽의 발생빈도는 3.4%이었다. 이상자엽실생 중 이수체 발생율은 22.0%이었다. 4배체 품종간 교배에서 얻어진 이수체 식물은 2개체(2n = 4x-2 = 74), 9개체(2n = 4x-1 = 75), 1개체(2n = 4x+1 = 77), 1개(2n = 4x+3 =79)로 총 13개체이었다. 본 실험결과 4배체 포도품종간 인공교배를 통해서 얻어진 이상자엽실생들은 대부분 이수체식물로 육묘단계에서 효율적인 선발이 가능성한 것으로 나타냈다.

Keywords

References

  1. Aida, M., T. Vernoux, M. Furutani, J. Trass, and M. Tasaka. 2002. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965-3974.
  2. Bacchi, O. 1940. Observacoes citologicas em Citrus: I. Numero de coromosomios de algumas especies evariedades. J. Agron. 3:249-258.
  3. Bowman, J.L. and Y. Eshed. 2000. Formation and maintenance of the shoot apical meristem. Trends in Plant Science 5:110-115. https://doi.org/10.1016/S1360-1385(00)01569-7
  4. Briand, C.H., S. Gaulthier, J.F. Lemay, S. Lalibert, and M.F. Tremblay. 1998. Relationship between field performance, family, embryo morphology, and isozyme heterozygosity and in vitro reactivity in jack pine. Can. J. Forest Research 28:98-105. https://doi.org/10.1139/x97-187
  5. Brookes, P.C., D.L. Wigston, and W.F. Bourne. 1980. The dependence of Quercus robur and Quercus petrata seedlings on cotyledon potassium, magnesium, calcium, and phosphorus during the first year of growth. Forestry 53:167-177. https://doi.org/10.1093/forestry/53.2.167
  6. Buchholz, J.T. 1919. Studies concerning the evolutionary status of polycotyledony. Amer. J. Bot. 6:106-119. https://doi.org/10.2307/2435188
  7. Butts, D. and J.T. Buchholz. 1940. Cotyledon numbers in conifers. Transactions of the Illinois Academy of Science 33:58-62.
  8. Chaudhury, A.M., S. Letham, S. Craig, and E.S. Dennis. 1993. ampl-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and presosious flowering. Plant J. 4:907-916. https://doi.org/10.1046/j.1365-313X.1993.04060907.x
  9. Conway, L.J. and R.S. Poethig. 1997. Mutations of Arabidopsis thaliana that transform leaves into cotyledons. Proceedings of the National Academy of Science USA 94:10209-10214. https://doi.org/10.1073/pnas.94.19.10209
  10. Crane, M.B. and W.J.C. Lawrence. 1930. Fertility and vigor of apples in relation to chromosome number. Jour. Gene. 22:153-163. https://doi.org/10.1007/BF02983844
  11. Dallings, J.W., K.E. Harms, and R. Axiprua. 1999. Seed damage tolerance cotyledonary resource use in the tropical tree Gustavia superva. Oikos 85:257-264. https://doi.org/10.2307/3546491
  12. Edwards, G.A., M.S. Brown, G.A. Niles, and S.A. Naqi. 1980. Monosomics of cotton. Crop Sci. 20:527-528. https://doi.org/10.2135/cropsci1980.0011183X002000040027x
  13. Esen, A. and R.K. Soost. 1972. Seed development in Citrus with special reference ot 2x $\times$ 4x crosses. Amer. J. Bot. 60:448-462.
  14. Ezura, H., H. Amagai, K. Yoshioka. and K. Oosawa. 1992. Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue culture of melon (Cucumis melo L.). Plant Sci. 85:209-213. https://doi.org/10.1016/0168-9452(92)90117-5
  15. Fukushima, E. and S. Tokumasu. 1957. On the occurrence of aneuploidy in the offspring of the artificially induced autotetraploid plants in Japanese radish (Raphanus sativus L.) and Chinese cabbage (Brassica pekinensis Rupr.). J. Fac. Agr. Kyushu Univ. 11(1):1-23. https://doi.org/10.2206/kyushumfs.11.1
  16. Grime, J.P. and D.W. Jefferey. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53:621-642. https://doi.org/10.2307/2257624
  17. Harrios, G. and N.G. Aderkas. 2004. Spatially quantitative control of the number of cotyledons in a clonal population of somatic embryos of hybrid Larch Larix x leptoeuropaea. Annals of botany 93:423-434. https://doi.org/10.1093/aob/mch061
  18. Hiroshi, E., I. Kikuta, and K. Oosawa. 1994. Production of aneuploid melon plants following in vitro culture of seeds from a triploid $\times$ diploid cross. Plant Cell 38:61-64.
  19. Ising, G. 1969. Cytogenetic studies in Cytanthus. II. Aneuploidy and internal chromosome balance. Hereditas 61:45-113.
  20. Juguet, M. 1992. A scanning electron microscope study of cotyledon development in Pinus caribaea Morelet, with some remarks on the relationships between polycotyly and docotyly. Bulletin de la Societe Botanique de France 139:235-245.
  21. Kaplan D.R. and T.J. Cooke. 1997. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9:1903-1919. https://doi.org/10.1105/tpc.9.11.1903
  22. Karpechenko, G.D. 1938. Tetraploid barleys obtained by high temperature treatment. Biol. Zhur. 7:287-294.
  23. Khush, G.S. 1973. Cytogenetics of Aneuploids. Academic Press, New York. USA.
  24. Kyung, H.Y. 2001. Breeding of single and three Way interspecific hybrids among H. syriacus, interspecific hybrid (H. syriacus $\times$ H. paramutabilis), and H. sinosyriacus. Ph D. Thesis, Kangwon National Univ.
  25. Lehman, A., R. Black, and J.R. Ecker. 1996. Hookless, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183-194. https://doi.org/10.1016/S0092-8674(00)81095-8
  26. Levan, A. 1942. The effect of chromosome variation in sugar beets. Hereditas 28:345-399.
  27. Lida, S. and E. Amano. 1990. Pollen irradiation to obtain mutants in monoecious cucumber. Gamma Field Symp. 29:95-111.
  28. Masema, I. 1952. Causes of sterility in tetraploid rice (In Japanese with English resume). Jap. Jour. Breed. 1:179-188. https://doi.org/10.1270/jsbbs1951.1.179
  29. Mochizuki, A. 1953. Genetic and cytological studies on the genus Beta. V. Production of triploid seeds. Improvement of sugar beets by means of triploidy 14-39. Tokyo.
  30. Morrison, J.W. 1956. Chromosome behavior and fertility of tetra petkus rye. Cytologia Fujii Jub. Vol. Pars II. 967-969.
  31. Ohmi, C., A. Wakao, and S. Shiraishi. 1993. Study of the parentage of grape cultivars by genetic interpretation of GPI-2 and PGM-2 isozymes. Euphytica 65:195-2002. https://doi.org/10.1007/BF00023083
  32. Oka, H.T. 1936. The progeny of tetraploid tomatoes (Preliminary report) (In Japanese with English resume). Jap. Jour. Genet. 12:89-92. https://doi.org/10.1266/jjg.12.89
  33. Oka, H.T. 1938. Studies on polyploidy of tomatoes. I. Fertility of the tetraploid tomatoes (In Japanese). Jour. Hort. Assoc. Japan 9:231-254.
  34. Oladokun, M. 1982. Fruit characteritics in Cola acuminata. 2. Nut size, cotyledon number and color. Turrialba 32:275-281.
  35. Park, S.M. 1998. Studies on the aneuploidy in grape (Vitis complex) with special reference to crosses with triploids and tetraploids. Ph D. Thesis, Kyushu Univ.
  36. Park, S.M., A. Wakana, and M. Hiramatsu. 1999a. Most hypotetraploid seedlings from self-pollinated tetraploid grapes (Vitis complexes) have abnormal cotyledons. J. Fac. Agr., Kyushu Univ. 44(1.2):81-89.
  37. Park, S.M., M. Hiramatsu, and A. Wakana. 1999b. Aneuploid plants derived from cross with triploid grapes through immature seed culture and subsequent embryo culture. Plant Cell. Tiss. Org. Cult. 59:125-133. https://doi.org/10.1023/A:1006477422833
  38. Pierce, L.K. and T.C. Wehner. 1990. Review of genes and linkage groups in cucumber. HortScience 25:605-615.
  39. Robinson, R.W., T.C. Wehner, J.D. McCreight, W.R. Henderson, and C.A. John. 1982. Update of the cucurbit gene list and nomenclature rules. Cucurbit Genet. Coop. Rpt. 5:62-66.
  40. Shanmugasundarum, S. and P.H. Williams. 1971. A cotyledon marker gene in cucumber. Veg. Imp. Nwsl. 13:4.
  41. Shanmugasundarum, S., P.H. Williams, and C.E. Peterson. 1972. A recessive cotyledon marker gene in cucumber with pleiotropic effects. HortScience 7:555-556.
  42. Sorensen, F.C. and J.F. Franklin. 1977. Influence of year of cone collection on seed weight and cotyledon number in Abies procera. Silvae Genetica 26:41-43.
  43. Suzuka, O., S. Koriba, and S. Mitsuoka. 1955. Studies on tetraploid Artemisia kurramensis Qzilbash induced by colchicine treatment. Seiken Ziho 7:63-67.
  44. Torres-Ruiz, R.A. and G. Jurgens. 1994. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967-2978.
  45. Tsuchiya, T. 1957. Fertility of autotetraploids and their hybrids in barley (In Japanese with English resume). Seiken Ziho 5:78-93.
  46. Weber, D.F. 1983. Monosomic analysis in diploid crop plants, pp. 352-378. In: M.S., Swaninathan, P.K. Gupta and U. Sinha (eds.). Cytogenetics of crop plants in Cytogenetics of crop plants. McMillan, India.
  47. Weber, D.F. 1991. Monosomic analysis in maize and other diploid crop plants. pp. 181-209. In : P.K. Gupta and T. Tsuchiya (eds.). Chromosome Engineering in Plants: Genetics, Breeding, Evolution. Part A. Elsevier, Amsterdam.
  48. Whelan, E.D.P., P.H. Williams, and A. Abul-Hayja. 1975. The inheritance of two induced cotyledon mutants of cucumber. HortScience 10:267-269.
  49. Yamane, H., A. Kurihara, and R. Tanaka. 1978. Research on polyploid grape breeding. I. : Chromosome counts of large berried Japanese grape varieties (in Japanese, English summary). Bull. Fruit Tree Res. Sta. (Akitsu, Japan) 2:1-8.