한지형 마늘의 인경 발육 과정에서 내생 지베렐린류의 함량변화

Changes in Endogenous Gibberellin Contents during Bulb Development Period in the Cold-type Cultivar of Garlic (Allium sativum L.) of Korea

  • Sohn, Eun-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Yoon-Ha (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Byung-Su (School of Applied Biosciences, Kyungpook National University) ;
  • Seo, Dong-Hwan (Seongju Fruit Vegetable Experiment Station) ;
  • Lee, Hyun-Suk (Gumi Floricultural Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
  • 투고 : 2010.05.06
  • 심사 : 2010.07.13
  • 발행 : 2010.10.31

초록

마늘의 안정적 수량 확보와 품질향상 방안을 모색하고자 마늘의 인경 비대에 관여하는 요인을 구명하기 위해 본 연구를 수행하였다. 한지형 마늘의 인편 분화기에서 인편 비대 최성기까지 식물체내 호르몬 함량의 변화를 조사하여 생육 특성과의 연관성을 구명한 결과는 다음과 같다. 마늘 식물체(엽신과 엽초)의 GA 함량을 GC-MS로 동정한 결과 마늘 식물체에서 18종 이상의 GA를 확인하였다. GA 함량은 마늘에 고등식물체에서 주로 존재하는 두 생합성 경로가 모두 존재하는 것으로 확인되었으며, 생리활성 $GA_4$를($7.25ng{\cdot}g^{-1}$ D.W.) 생합성 하는 non C-13 hydroxylation pathway(NCH)가 $GA_1$을($2.97ng{\cdot}g^{-1}$ D.W.) 생합성 하는 early C-13 hydroxylation pathway (ECH) 보다 우세한 것으로 조사되었다. 한지형 의성마늘 인경 분화 및 비대 시 식물체내 호르몬 변화를 조사한 결과 total GA 함량은 인편 분화기부터 비대개 시기까지 점진적으로 증가하다가 인경이 비대되는 동안 점차 감소하였다. 생리활성 GA인 $GA_4$$GA_1$의 함량은 총 GA 함량과 같은 경향으로 변화하여 인경 비대와 밀접한 연관이 있는 것으로 나타났다. 마늘 생장 양상과 엽초의 호르몬 변화 양상은 유사한 경향을 보여 엽초의 호르몬 변화가 마늘 생장과 밀접한 연관이 있음을 보여주었다.

This study was performed to investigate the role of phytohormones in the bulbing of garlic in order to assess the yield and quality. The effect on endogenous plant hormones such as gibberellin (GA) content was also examined during growth stage i.e. clove differentiation to bulbing in garlic. More than 18 gibberellins in garlic were identified with extensive gas chromatograph-mass spectrometry-selected ion monitoring (GC-MS-SIM) quantitative analysis. The results showed that GAs were biosynthesized by both non C-13 hydroxylation pathway (NCH) and early C-13 hydroxylation pathway (ECH) in garlic plant. It was also revealed that NCH pathway leading to synthesis of bioactive $GA_4$ was the more prominent GA biosynthesis pathway than ECH pathway in which bioactive $GA_1$ was synthesized. Total GAs level was gradually increased from clove differentiation to bulbing and later decreased, which portrays the active role of GA in differentiation. The biosynthesis ratio of bioactive $GA_4$ and $GA_1$ concentration was similar to that of total GAs content, which was closely related with bulb development in garlic.

키워드

참고문헌

  1. Ahn, Y.K., H.S. Choi, G.L. Lee, and H.D. Suh. 2008. Establishment of bulbil cultivation using bulbil sower in garlic (Allium sativum L.). Kor. J. Hort. Sci. Technol. 26:219-222.
  2. Arguello, J.A., R. Bottni, R. Suna, G.A. De Bottini, and R.W. Racca. 1983. Dormancy in garlic (Allium sativum L.) cv. Rosado puraguayo. I. Levels of growth substance in seed cloves under storage. Plant & Cell Physiol. 24:1559-1563. https://doi.org/10.1093/oxfordjournals.pcp.a076679
  3. Ayabe, M. 2001. A novel and efficient tissue culture method-stem disc dome culture-for producing virus-free garlic (Allium sativum L.) Plant cell Rep. 20:503-507. https://doi.org/10.1007/s002990100358
  4. Chang, M.U., W.W. Park, J.D. Chung, K.B. Lim, Y.J. La. 1998. Distribution of garlic latent virus and garlic mosaic virus in infected garlic tissues. Hort. Environ. Biotechnol. 29:253-265.
  5. Cho, J.E. and S.K. Lee. 2008. Current research status of postharvest technology of garlic (Allium sativum L.). Kor. J. Hort. Sci. Technol. 26:350-356.
  6. Foster, K.R. and P.W. Morgan. 1995. Genetic regulation of development in Sorghum bicolor. IX. The ma3 R allele disrupts diurnal control of gibberellin biosynthesis. Plant Physiol. 108:337-343. https://doi.org/10.1104/pp.108.1.337
  7. Kim, K.S., Y.S. Song, Y.S. Jang, S.S. Nam, I.H. Choi, and J.K. Bang 2006. Production of virus-free bulblets of garlic (Allium sativum L.) by meristem-tip culture of immature vegetative bulbils. Kor. J. Hort. Sci. Technol. 24:441-446.
  8. Lee, I.J., K.R. Foster, and P.W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116:1003-1011. https://doi.org/10.1104/pp.116.3.1003
  9. MacMillan, J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regulat. 20:387-442.
  10. Mann, L.K. 1952. Anatomy of the garlic bulb and factors affecting bulb development. Hilgardia 21:195-251. https://doi.org/10.3733/hilg.v21n08p195
  11. Nam, S.K., I.H. Choi, S.K. Bae, and J.K. Bang. 2005. Effect of planting dates and planting density using large bulbils for seed clove production of garlic 'Namdo' in southern regions. Kor. J. Hort. Sci. Technol. 23:265-268.
  12. Nam, S.K., I.H. Choi, S.K. Bae, and J.K. Bang. 2007. Effect of irrigation level on plant growth and bulb yield during bulb development stage of garlic plants. Kor. J. Hort. Sci. Technol. 25:169-173.
  13. Rahim, M.A. and R. Fordham. 2001. Environmental manipulation for controlling bulbing in garlic. Acta Hort. 555:181-188.
  14. Rural Development Administration (RDA). 2002. Incoming data agricultural and stockbreeding products. p. 91.
  15. Talon, M., J.A.D. Zeevaart, and D.A. Gage. 1991. Identification of gibberellin in spinach and effects of light and darkness on their levels. Plant Physiol. 97:1521-1526. https://doi.org/10.1104/pp.97.4.1521
  16. Walkey, D.G.A., M.J.W. Web, C.J. Bolland, and A. Miller. 1987. Production of virus-free garlic (Allium sativum L.) and shallot (Allium ascalonicum L.) by meristem-tip culture. J. Hort. Sci. 62:211-220.
  17. Wu, K., L. Li, D.A. Gage, and J.D.A. Zeevaart. 1996. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 110:547-554. https://doi.org/10.1104/pp.110.2.547
  18. Xu, Y.L., L. Li, D.A. Gage, and J.A.D. Zeevaart. 1999. Feedback regulation of ga5 expression and metabolic engineering of gibberellin levels in Arabidopsis. The Plant Cell 11:927-936. https://doi.org/10.1105/tpc.11.5.927