Auxin and Cytokinin Affect Biomass and Bioactive Compound Production from Adventitious Roots of Eleutherococcus koreanum

섬오갈피 부정근 배양 시 오옥신과 사이토키닌이 생장과 생리활성물질 생산에 미치는 영향

  • Lee, Eun-Jung (Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University) ;
  • Kim, Myong-Ki (Department of Horticulture, Chungbuk National University) ;
  • Paek, Kee-Yoeup (Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University)
  • 이은정 (충북대학교 첨단원예기술개발연구센터) ;
  • 김명기 (충북대학교 원예학과) ;
  • 백기엽 (충북대학교 첨단원예기술개발연구센터)
  • Received : 2010.02.16
  • Accepted : 2010.04.12
  • Published : 2010.08.31

Abstract

In an attempt to improve biomass and bioactive compound production, we cultured adventitious roots of $Eleutherococcus$ $koreanum$ in 250 mL Erlenmeyer flasks using Murashige and Skoog (MS) medium with different concentrations of auxins (IBA, NAA, IAA) and cytokinins (BA, kinetin, TDZ). Root biomass (fresh and dry weight) was enhanced at $5mg{\cdot}L^{-1}$ indole-3-butyric acid (IBA) after 5 weeks of culture. The content of total phenolics and flavonoids was also increased with $5mg{\cdot}L^{-1}$ IBA compared to ${\alpha}$-naphtalene acetic acid (NAA) or indole-3-acetic acid (IAA) treatments. The combination of $5mg{\cdot}L^{-1}$ IBA with $0.1mg{\cdot}L^{-1}$ thidiazuron (TDZ; N-phenyl-N'-1,2,3,-thidiazol-5-ylurea) enhanced root fresh and dry weight (1.4- and 1.6-fold, respectively) as well as the content of total phenolics and flavonoids compared to the relative control (without cytokinin). On the contrary, $N_6$-benzyladenine (BA) and 6-furfurylaminopurine (kinetin) did not significantly affect root biomass and bioactive compound production in adventitious roots of $E.$ $koreanum$. These results suggested that $5mg{\cdot}L^{-1}$ IBA combination with $0.1mg{\cdot}L^{-1}$ TDZ supplementation was most suitable for both biomass and bioactive compound production from adventitious roots of $E.$ $koreanum$.

섬오갈피 부정근의 생장과 생리활성물질 생산에 적합한 MS 배지 내 오옥신(IBA, NAA, IAA)과 사이토키닌(BA, kinetin, TDZ)의 종류와 농도를 구명하고자 250mL 삼각플라스크를 이용하여 5주간 액체 진탕 배양하였다. IBA $5mg{\cdot}L^{-1}$ 처리구에서 생체중과 건물중이 가장 높았으며, 부정근 내 총 페놀과 플라보노이드 함량 역시 NAA나 IAA처리구에 비해 높았다. 오옥신과 사이토키닌의 혼용처리에 따른 부정근의 생장은 IBA $5mg{\cdot}L^{-1}$와 TDZ $0.1mg{\cdot}L^{-1}$와의 혼용 처리구가 IBA 단용 처리구에 비해 생체중과 건물중이 각각 1.4배와 1.6배 증가하여 가장 높은 생장량과 생리활성물질 함량을 나타내었다. 이에 비해 BA와 kinetin과의 혼용 처리는 IBA 단용 처리와 비교해 부정근의 생장과 생리활성물질 생산에 크게 영향을 주지 않았다. 본 실험을 통하여 MS 배지 내 오옥신과 사이토키닌을 IBA $5mg{\cdot}L^{-1}$와 TDZ $0.1mg{\cdot}L^{-1}$로 혼용 처리 할 경우 섬오갈피 부정근의 생장량과 생리활성물질 함량을 크게 증가시킬 수 있음을 확인하였다.

Keywords

References

  1. Ahn, J.K., S.Y. Park, W.Y. Lee, and J.J. Lee. 2005. Effects of growth regulators on adventitious root growth and eleutherosides and chlorogenic acid accumulation in air lift bioreactor cultures of Eleutherococcus koreanum. Kor. J. Plant Biotechnol. 32:57-61. https://doi.org/10.5010/JPB.2005.32.1.057
  2. Ahn, J.K., S.Y. Park, W.Y. Lee, and Y.K. Park. 2006. Effects of jasmonic acid on root growth and eleutheroside accumulation in adventitious root culture of Eleutherococcus koreanum. J. Kor. For. Soc. 95:32-27.
  3. Ali, M.B., E.J. Hahn, and K.Y. Paek. 2006. Antioxidantive responses of Echinacea angustifolia cultured roots to different levels of $CO_2$ in bioreactor liquid cultures. Enz. Microbial Technol. 39:982-990. https://doi.org/10.1016/j.enzmictec.2006.02.002
  4. Choi, S.M., S.H. Son, S.R. Yun, O.W. Kown, J.H. Seon, and K.Y. Paek. 2000. Pilot scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tiss. Org. Cult. 62:187-193. https://doi.org/10.1023/A:1006412203197
  5. Huettaman, C.A. and J.E. Preece. 1993. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. Cult. 33:105-119. https://doi.org/10.1007/BF01983223
  6. Jeong, C.S., H.N. Murthy, E.J. Hahn, and K.Y. Paek. 2009. Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng C.A. Meyer). Acta Physiol. Plant 31:219-222. https://doi.org/10.1007/s11738-008-0206-y
  7. Jwa, C.S., Y.T. Yang, and J.S. Koh. 2000. Changes in free sugars, organic acids, free amino acids and minerals by harvest time and parts of Acanthopanax koreanum. J. Kor. Soc. Agric. Chem. Biotechnol. 43:106-109.
  8. Kim, Y.S., E.J. Hahn, E.C. Yeung, and K.Y. Paek. 2003a. Lateral root development and saponin accumulation as affected by IBA and NAA in adventitious root culture of Panax ginseng C.A. Meyer. In vitro Cell Dev. Biol. Plant 39:245-249. https://doi.org/10.1079/IVP2002397
  9. Kim, Y.S., E.J. Hahn, and K.Y. Paek. 2003b. Effects of auxininduced ethylene on growth and development of adventitious roots of Panax ginseng C.A. Meyer. Kor. J. Plant Biotechnol. 30:173-177. https://doi.org/10.5010/JPB.2003.30.2.173
  10. Ko, H.J., C.K. Song, and N.K. Cho. 2003. Growth of seedling and germination characteristics of Acanthopanax koreanum Nakai. Kor. J. Medicinal Crop Sci. 11:46-52.
  11. Lee, E.J., M. Mobin, E.J. Hahn, and K.Y. Paek. 2006. Effects of sucrose, inoculum density, auxins, and aeration volume on cell growth of Gymnema sylvestre. J. Plant Biol. 49:427-431. https://doi.org/10.1007/BF03031122
  12. Lee, S.H., E.J. Hahn, and K.Y. Paek. 2008. Nitrogen source and sucrose concentration in the medium affect Indian ginseng (Withania somniefera) cultures in vitro. Kor. J. Hort. Sci. Technol. 26:306-312.
  13. Lim, J.H., S.H. Lee, B.S. Jun, Y.T. Yang, and J.S. Koh. 2005. Changes in major constituents by soaking of Acanthopanax koreanum with spirit solution. J. Kor. Soc. Appl. Biol. Chem. 48:166-172.
  14. Murashige, T. and F. Skoog. 1962. A revise medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Murthy, H.M., E.J. Hahn, and K.Y. Paek. 2008. Adventitious roots and secondary metabolism. Chin. J. Biotechnol. 24:711-716. https://doi.org/10.1016/S1872-2075(08)60035-7
  16. Narayan, M.S., R. Thimmaraju, and N. Bhagyalakshmi. 2005. Interplay of growth regulators during solid-state and liquid-state batch cultivation of antocyanin cell line of Daucus carota. Process Biochem. 40:351-358. https://doi.org/10.1016/j.procbio.2004.01.009
  17. Paek, K.Y., E.J. Hahn, and S.H. Son. 2001. Application of bioreactors for large-scale micropropagation systems of plants. In vitro Cell. Dev. Biol. 37:284-292.
  18. Park, S.Y., J.K. Ahn, W.Y, Lee, H.N. Murthy, and K.Y. Paek. 2005. Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerates. Plant Sci. 168:1221-1225. https://doi.org/10.1016/j.plantsci.2004.12.023
  19. Sahai, O.P. and M.L. Shuler. 1984. Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnol. Bioeng. 26:111-120. https://doi.org/10.1002/bit.260260202
  20. Sakanaka, S., Y. Tachibana, and Y. Okada. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem. 89:569-575. https://doi.org/10.1016/j.foodchem.2004.03.013
  21. SAS Institute. 1989. SAS/STAT User's guide. 4th ed. Ver. 6. SAS Inst., Cary, NC.
  22. Seitz, H.U. and W. Hinderer. 1988. Anthocyanins: Cell culture and somatic cell genetics of plants. Vol. 5. Academic Press., San Diego, USA.
  23. Shohael, A.M., M.B. Ali, K.W. Yu, E.J. Hahn, R. Islam, and K.Y. Paek. 2006. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem. 41:1179-1185. https://doi.org/10.1016/j.procbio.2005.12.015
  24. Shohael, A.M., H.N. Murthy, H.L. Lee, E.J. Hahn, R. Islam, and K.Y. Paek. 2008. Increased eleutheroside production in Eleutherococcus senticosus embryogenic suspension cultures with methyl jasmonate treatment. Biochem. Eng. J. 38:270-273. https://doi.org/10.1016/j.bej.2007.07.010
  25. Southwell, L.A. and C.A. Bourke. 2001. Seasonal variation in hypercin content of Hypericum perforatum L. (St. John's wort). Phytochem. 56:437-441. https://doi.org/10.1016/S0031-9422(00)00411-8
  26. Washida, D., K. Shimomura, M. Takido, and S. Kitanaka. 2004. Auxins affected ginsenoside production and growth of hairy roots in Panax hybrid. Biol. Pharm. Bull. 27:657-660. https://doi.org/10.1248/bpb.27.657
  27. Wu, C.H., Y.H. Dewir, E.J. Hahn, and K.Y. Paek. 2006. Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J. Plant Biol. 49:193-199. https://doi.org/10.1007/BF03030532
  28. Wu, C.H., H.N. Murthy, E.J. Hahn, and K.Y. Paek. 2007. Largescale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol. Lett. 29:1179-1182. https://doi.org/10.1007/s10529-007-9399-1
  29. Zhong, J.J., Y. Bai, and S.J. Wang. 1996. Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J. Biotechnol. 45:227-234. https://doi.org/10.1016/0168-1656(95)00170-0