Current Research Status of Postharvest Technology of Onion (Allium cepa L.)

양파(Allium cepa L.) 수확후 관리기술 최근 연구 동향

  • Cho, Jung-Eun (Department of Plant Science, Seoul National University) ;
  • Bae, Ro-Na (National Instrument Center for Environmental Management, Seoul National University) ;
  • Lee, Seung-Koo (Department of Plant Science, Seoul National University)
  • 조정은 (서울대학교 식물생산과학부) ;
  • 배로나 (서울대학교 농생명과학공동기기원) ;
  • 이승구 (서울대학교 식물생산과학부)
  • Received : 2009.09.15
  • Accepted : 2010.02.06
  • Published : 2010.06.30

Abstract

Onion has been reported to contain various organosulfur compounds which have antibiotic and anticarcinogenic properties and flavonoid like quercetin which is a valuable natural source of antioxidants. Carbohydrates in onion constitute about 80% of dry matter, and the major non-structural carbohydrate of onion bulb is fructo-oligosaccharides, well known as fructan, followed by glucose, fructose, and sucrose. The sugar concentration is associated with dormancy and storage life of onion, occurring as decrease in glucose, fructose and fructan, particularly towards the end of storage. Forced air pre-drying for 15-20 days at room temperature is an essential procedure to reduce freezing injury and sprouting, then onion bulbs can be stored at $0^{\circ}C$ for 6 months to control sprouting and decay. Bacterial soft rot caused by $Erwinia$ and $Pseudomonas$ is the main postharvest disease when the bulbs are infected with the bacteria and stored at room temperature. Browning in sliced onion is due to oxidation of phenolic compounds by polyphenol oxidase and it can be inhibited by citric acid treatment, packing with nitrogen gas, and polyethylene film.

양파는 항생 및 항암작용을 나타내 심장 질환 및 성인병에 효과적인 다양한 유황화합물과 항산화 작용이 뛰어난 flavonoid를 다량 함유하고 있다. 양파는 건물중의 80%를 당이 차지할 정도로 당 함량이 높으며, 주요 당은 fructan으로 잘 알려진 fructo-oligosaccharide이며 그 외 glucose, fructose, sucrose 등이 있다. 당 함량은 양파의 저장성에도 큰 영향을 미쳐서 당 함량이 높을수록 저장성이 좋으며, 저장 말기로 갈수록 glucose, fructose, 그리고 fructan 등의 감소가 일어난다. 충분한 예건이 이루어지지 않을 경우 냉해를 입을 수 있으므로 수확후 상온에서 15-20일간 차압송풍예건을 실시해야 한다. 예건실시후 $0^{\circ}C$에서 저장해야 맹아신장 및 부패를 막아 저장수명을 연장할 수 있다. 양파의 대표적인 저장 장해는 $Erwinia$$Pseudomonas$에 의해 발생하는 무름병이며, 병에 감염된 양파를 상온 저장시 발병율이 높아진다. 최근 신선편이 제품이 많이 출시되고 있으며, 신선편이 제품의 저장수명 연장을 위한 연구가 수행되고 있다. 신선편이 양파에서 발생하는 갈변현상은 polyphenol oxidase가 주 원인인 산화반응으로 유기산, 질소충진 포장 및 PE 필름 포장 등으로 억제하고 있다.

Keywords

References

  1. Abayomi, L.A. and L.A. Terry. 2009. Implications of spatial and temporal changes in concentration of pyruvate and glucose in onion (Allium cepa L.) bulbs during controlled atmosphere storage. J. Sci. Food Agric. 89:683-687. https://doi.org/10.1002/jsfa.3502
  2. Bonaccorsi, P., C. Caristi, C. Gargiulli, and U. Leuzzi. 2008. Flavonol glucosides in Allium species: A comparative study by means of HPLC-DAD-ESI-MS-MS. Food Chem. 107:1668-1673. https://doi.org/10.1016/j.foodchem.2007.09.053
  3. Bufler, G. 2009. Exogenous ethylene inhibits sprout growth in onion bulbs. Ann. Bot. 103:23-28. https://doi.org/10.1093/aob/mcn203
  4. Chope, G.A., L.A. Terry, and P.J. White. 2007a. The effect of 1-methylcyclopropene (1-MCP) on the physical and biochemical characteristics of onion cv. SS1 bulbs during storage. Postharvest Biol. Technol. 44:131-140. https://doi.org/10.1016/j.postharvbio.2006.11.012
  5. Chope, G.A., L.A. Terry, and P.J. White. 2007b. Preharvest application of exogenous abscisic acid (ABA) or an ABA analogue does not affect endogenous ABA concentration of onion bulbs. Plant Growth Regul. 52:117-129. https://doi.org/10.1007/s10725-007-9169-z
  6. Coolong, T.W. and W.M. Randle. 2003. Sulfur and nitrogen availability interact to affect the flavor biosynthetic pathway in onion. J. Amer. Soc. Hort. Sci. 128:776-783.
  7. Coolong, T.W. and W.M. Randle. 2008. The effects of calcium chloride and ammonium sulfate on onion bulb quality at harvest and during storage. HortScience 43:465-471.
  8. Coolong, T.W., W.M. Randle, and L. Wicker. 2008. Structural and chemical differences in the cell wall regions in relation to scale firmness of three onion (Allium cepa L.) selections at harvest and during storage. J. Sci. Food Agric. 88:1277-1286. https://doi.org/10.1002/jsfa.3219
  9. Corzo-Martinez, M., N. Corzo, and M. Villamiel. 2007. Biological properties of onions and garlic. Trends Food Sci. Technol. 18:609-625. https://doi.org/10.1016/j.tifs.2007.07.011
  10. Croci, C.A., S.A. Banek, and O.A. Curzio. 1995. Effect of gammairradiation and extended storage on chemical quality in onion (Allium cepa L.). Food Chem. 54:151-154. https://doi.org/10.1016/0308-8146(94)00160-7
  11. Galdon, B.R., C.T. Rodriguez, E.R. Rodriguez, and C.D. Romero. 2008. Organic acid contents in onion cultivars (Allium cepa L.). J. Agric. Food Chem. 56:6512-6519. https://doi.org/10.1021/jf800282h
  12. Gorinstein, S., Z. Jastrzebski, H. Leontowicz, M. Leontowicz, J. Namiesnik, K. Najman, Y.S. Park, B.G. Heo, J.Y. Cho, and J.H. Bae. 2009a. Comparative control of the bioactivity of some frequently consumed vegetables subjected to different processing conditions. Food Cont. 20:407-413. https://doi.org/10.1016/j.foodcont.2008.07.008
  13. Gorinstein, S., H. Leontowicz, M. Leontowicz, J. Namiesnik, K. Najman, J. Drzewieck, M. Cvikrova, O. Martincova, E. Katrich, and S. Trakhtenberg. 2008. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 56:4418-4426. https://doi.org/10.1021/jf800038h
  14. Gorinstein, S., Y.S. Park, B.G. Heo, J. Namiesnik, H. Leontowicz, M. Leontowicz, K.S. Ham, J.Y. Cho, and S.G. Kang. 2009b. A comparative study of phenolic compounds and antioxidant and antiproliferative activities in frequently consumed raw vegetables. Eur. Food Res. Technol. 228:903-911. https://doi.org/10.1007/s00217-008-1003-y
  15. Grzelak, K., J. Milala, B. Krol, F. Adamicki, and E. Badelek. 2009. Content of quercetin glycosides and fructooligosaccharides in onion stored in a cold room. Eur. Food Res. Technol. 228:1001-1007. https://doi.org/10.1007/s00217-009-1018-z
  16. Jaime, L., M.A. Martin-Cabrejas, E. Molla, F.J. Lopez-Andreu, and R.M. Esteban. 2001. Effect of storage on fructan and fructooligosaccharide of onion (Allium cepa L.). J. Agric. Food Chem. 49:982-988. https://doi.org/10.1021/jf000921t
  17. Jeong, C.H., H.J. Heo, S.G. Choi, and K.H. Shim. 2009. Antioxidant and anticancer properties of methanolic extracts from different parts of white, yellow, and red onion. Food Sci. Biotechnol. 18:108-112.
  18. Kopsell, D.E., W.M. Randle, and M.A. Eiteman. 1999. Changes in the S-alk(en)yl cysteine sulfoxides and their biosynthetic intermediates during onion storage. J. Amer. Soc. Hort. Sci. 124:177-183.
  19. Lee, S.U., J.H. Lee, S.H. Choi, J.S. Lee, M. Ohnisi-Kameyama, N. Kozukue, C.E. Levin, and M. Friedman. 2008. Flavonoid content in fresh, home-processed, and light-exposed onions and in dehydrated commercial onion products. J. Agric. Food Chem. 56:8541-8548. https://doi.org/10.1021/jf801009p
  20. Lim, C., J. Lim, S. Kang, and J. Cho. 2002. Effect of pre-drying and chemical treatments on storability of an early onion (Allium cepa L.). Kor. J. Hort. Sci. Technol. 20:314-318.
  21. McCallum, J., N. Porter, B. Searle, M. Shaw, B. Bettjeman, and M. McManus. 2005. Sulfur and nitrogen fertility affects flavour of field-grown onions. Plant Soil 269:151-158. https://doi.org/10.1007/s11104-004-0402-5
  22. Mogren, L.M., M.E. Olsson, and U.E. Gertsson. 2007. Quercetin content in stored onions (Allium cepa L.): Effects of storage conditions, cultivar, lifting time and nitrogen fertiliser level. J. Sci. Food Agric. 87:1595-1602. https://doi.org/10.1002/jsfa.2904
  23. Nemeth, K. and M.K. Piskula. 2007. Food content, processing, absorption and metabolism of onion flavonoids. Critical Rev. Food Sci. Nutr. 47:397-409. https://doi.org/10.1080/10408390600846291
  24. Park, S., S. Hong, and Y. Park. 2001. Changes in stored bulb quality of 'Higuma' onion as influenced by predrying status. J. Kor. Soc. Hort. Sci. 42:699-702.
  25. Perner, H., S. Rohn, G. Driemel, N. Batt, D. Schwarz, L.W. Kroh, and E. George. 2008. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J. Agric. Food Chem. 56:3538-3545. https://doi.org/10.1021/jf073337u
  26. Prakash, D., B.N. Singh, and G. Upadhyay. 2007. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 102:1389-1393. https://doi.org/10.1016/j.foodchem.2006.06.063
  27. Rohman, M.M., M.D. Hossain, T. Suzuki, G. Takada, and M. Fujita. 2009. Quercetin-4'-glucoside: A physiological inhibitor of the activities of dominant glutathione S-transferases in onion (Allium cepa L.) bulb. Acta Physiol. Plant. 31:301-309. https://doi.org/10.1007/s11738-008-0234-7
  28. Rohn, S., N. Buchner, G. Driemel, M. Rauser, and L.W. Kroh. 2007. Thermal degradation of onion quercetin glucosides under roasting conditions. J. Agric. Food Chem. 55:1568-1573. https://doi.org/10.1021/jf063221i
  29. Roldan-Marin, E., C. Sanchez-Moreno, R. Lloria, B. de Ancos, and M.P. Cano. 2009. Onion high-pressure processing: Flavonol content and antioxidant activity. Lwt-Food Sci. Technol. 42: 835-841. https://doi.org/10.1016/j.lwt.2008.11.013
  30. Roldan, E., C. Sanchez-Moreno, B. de Ancos, and M.P. Cano. 2008. Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chem. 108:907-916. https://doi.org/10.1016/j.foodchem.2007.11.058
  31. Selma, M.V., A. Allende, F. Lopez-Galvez, M.A. Conesa, and M.I. Gil. 2008. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbial. 25:809-814. https://doi.org/10.1016/j.fm.2008.04.005
  32. Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2007. Shortduration water stress decreases onion single centers without causing translucent scale. HortScience 42:1450-1455.
  33. Slimestad, R., T. Fossen, and I.M. Vagen. 2007. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 55:10067-10080. https://doi.org/10.1021/jf0712503
  34. Vagen, I.M. and R. Slimestad. 2008. Amount of characteristic compounds in 15 cultivars of onion (Allium cepa L.) in controlled field trials. J. Sci. Food Agric. 88:404-411. https://doi.org/10.1002/jsfa.3100
  35. Wach, A., K. Pyrzynska, and M. Biesaga. 2007. Quercetin content in some food and herbal samples. Food Chem. 100:699-704. https://doi.org/10.1016/j.foodchem.2005.10.028
  36. Wang, H., J.M. Li, Z.F. Wang, X. Zhang, and Y.Y. Ni. 2007. Modified method for rapid quantitation of S-alk(en)yl-L-cysteine sulfoxide in yellow onions (Allium cepa L.). J. Agric. Food Chem. 55:5429-5435. https://doi.org/10.1021/jf070298d
  37. Wright, P.J. and C.M. Triggs. 2005. Effects of curing, moisture, leaf removal, and artificial inoculation with soft-rotting bacteria on the incidence of bacterial soft rot of onion (Allium cepa) bulbs in storage. Austral. Plant Pathol. 34:355-359. https://doi.org/10.1071/AP05051
  38. Yasin, H.J. and G. Bufler. 2007a. Dormancy and sprouting in onion (Allium cepa L.) bulbs. I. Changes in carbohydrate metabolism. J. Hort. Sci. Biotechnol. 82:89-96. https://doi.org/10.1080/14620316.2007.11512203
  39. Yasin, H.J. and G. Bufler. 2007b. Dormancy and sprouting in onion bulbs. II. Changes in sulphur metabolism. J. Hort. Sci. Biotechnol. 82:97-103. https://doi.org/10.1080/14620316.2007.11512204
  40. Yi, Y.K. and Y.M. Park. 1999. Soft rot of onion stored under low temperature condition caused Erwinia rhapontici and Burkholderia cepacia. Bul. Inst. Agric. Sci. Technol. 6:33-40.