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Lung interstitial cells during alveolarization

Recent progress in neonatal medicine has enabled survival of many 
extremely low-birth-weight infants. Prenatal steroids, surfactants, and 
non-invasive ventilation have helped reduce the incidence of the classi-
cal form of bronchopulmonary dysplasia characterized by marked 
fibrosis and emphysema. However, a new form of bronchopulmonary 
dysplasia marked by arrest of alveolarization remains a complication 
in the postnatal course of extremely low-birth-weight infants. To better 
under stand this challenging complication, detailed alveolarization 
mechanisms should be delineated. Proper alveolarization involves 
the temporal and spatial coordination of a number of cells, media-
tors, and genes. Cross-talk between the mesenchyme and the epithe-
lium through soluble and diffusible factors are key processes of 
alveolarization. Lung interstitial cells derived from the mesenchyme 
play a crucial role in alveolarization. Peak alveolar formation coincides 
with intense lung interstitial cell proliferation. Myofibroblasts are 
essential for secondary septation, a critical process of alveolarization, 
and localize to the front lines of alveologenesis. The differentiation and 
migration of myofibroblasts are strictly controlled by various mediators 
and genes. Disruption of this finely controlled mechanism leads to 
abnormal alveolarization. Since arrest in alveolarization is a hallmark 
of a new form of bronchopulmonary dysplasia, knowledge regarding 
the role of lung interstitial cells during alveolarization and their control 
mechanism will enable us to find more specific therapeutic strategies 
for bronchopulmonary dysplasia. In this review, the role of lung 
interstitial cells during alveolarization and control mechanisms of their 
differentiation and migration will be discussed.
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alveolar developmental arrest. In recent times, most preterm infants 
with BPD have been born between the late canalicular and early 
saccular stages, during which active acini and alveolar sac formation 
occurs. Preterm infants born in this period have to breathe with 

Introduction

Bronchopulmonary dysplasia (BPD) that develops after 
surfactant and non-invasive ventilation therapy is characterized by 
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structurally and functionally immature lungs. In a majority of such 
cases, ventilation assistance and supplemental oxygen are required 
for survival. Lung development involves the temporal and spatial 
coordination of a number of transcription and growth factors and 
cell-cell interactions. This precise developmental process is disrupted 
in prematurely born infants by various means, including hyperoxia, 
mechanical stretch, and inflammation1-3).

Until the saccular stage, alveolar sacs are made by dichotomous 
branching tubules4, 5). Further extension of the gas exchange surface 
from the alveolar sacs occurs through a different mechanism 
termed alveolar septation. Saccular walls are subdivided by the 
protrusion of secondary septa that grow perpendicularly into the 
air space6). Lung interstitial cells play crucial roles in secondary 
septa formation, and their number markedly increases during 
alveolarization and decreases thereafter7). 

Elastic fibers 

The lung consists of 3 interconnected elastic fiber systems8). 
Axial elastic fibers originate from the bronchiolar wall and form 
an outline of alveolar ducts. Peripheral elastic fibers are connected 
to the pleura and penetrate the area beneath alveolar acini. Septal 
elastic fibers appear as saccules and alveoli forms and are anchored 
to both axial and peripheral elastic fiber systems9, 10). Elastin is a 
very stable molecule and once interconnection of these elastic fiber 
systems is completed, the components retain their configuration11).

Lung fibroblasts

Two subsets of interstitial cells exist during lung development, 
including myofibroblasts or nonlipid lung interstitial cells and 
lipofibroblasts or lipid interstitial cells12), and appear to be derived 
from the same mesenchymal cells. However, the cells show 
varying growth rates at any age and are hypothesized to be separate 
populations13, 14). Lipofibroblasts contain lipid droplets containing 
triglycerides, cholesterol esters, and retinyl esters, and are present 
at the base of elongating septa during alveolar septation15, 16). 
Lipofibroblasts are thought to supply triglycerides for surfactant 
phospholipid synthesis15). More importantly, these cells are a source 
of retinoic acid, which has a major role in alveolarization. 

Myofibroblasts lack lipid droplets and express smooth muscle 
actin. They are contractile cells and the source of septal elastin17). 
Myofibroblasts are located in developing secondary crests and 
at septal tips during the alveolar stage of lung development and 
are thus called alveolar myofibroblasts18). They are dual positive 
for elastin and smooth muscle actin in immunostaining assays, 

suggesting a role in elastin formation19). Alveolar myofibroblasts 
have morphologic and biochemical characteristics intermediate to 
fibroblasts and smooth muscle cells. During the pseudogladular 
stage of lung development, progenitors of alveolar myofibroblasts 
exist as a population of lung mesenchymal cells expressing platelet 
derived growth factor receptor (PDGFR)-α around the distal 
lung epithelial tubules and buds20). During the canalicular and 
saccular stages, these PDGFR-α-positive cells spread from their 
location around the distal epithelial buds to the walls of prospective 
terminal saccules to eventually become alveolar myofibroblasts 
(Fig. 1). Alveolar myofibroblasts are critical for secondary septa 
formation. Their absence is associated with a lack of secondary 
septation and the alveolarization failure21). Dysregulated myofibro-
blast development has been implicated in BPD22). Alveolar myo-
fibroblasts are abundant during alveolarization, but are absent in 
adult lungs23). Because an excess of myofibroblasts is implicated in 
fibrotic diseases, alveolar myofibroblast disappearance following 
alveolarization completion may be critical. However, the regulatory 
mechanism of survival during alveolarization and subsequent 
disappearance of alveolar myofibroblasts is poorly understood.

Although these 2 subsets of lung interstitial cells have different 
characteristics, they can reciprocally transdifferentiate into the other 
subset under specific in vitro conditions24, 25). 

Elastic fiber formation and alveolar septation

The force necessary for lifting the alveolar crest from the primary 
septa wall is thought to be produced by septal elastic fibers. First, 
elastic fibers accumulate in the thickened area of primary septa 
(septal crest). Secondary, this thickened area grows into secondary 
crest that protrudes perpendicularly from the saccular wall into 
air space. Finally, secondary crest further extends into secondary 
septa. During this process, elastic fiber deposits are always located 
at the fore-end of developing secondary septa (Fig. 2). This feature is 
universally observed in all species, including humans26). Mechanical 
stress to elastic fibers located along saccular wall bends is believed 
to cause the fibers to protrude from the saccular walls, leading 
to new septum formation6). However, another theory involves a 

Fig. 1. Locations of myofibroblasts during lung development.
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repulsive signal to epithelial cells in the primary septum may push 
the secondary septum into air space. In this theory, myofibroblasts 
simply follow epithelial cells27). 

The essential role of elastic fibers in septation is supported by 
various studies. Elastin expression in cultured fibroblasts isolated 
from rat lung at various postnatal ages is consistent with the degree 
of septation28).

Hyperoxia that inhibits alveolarization also significantly decreases 
elastin expression29). In vivo studies demonstrate that postnatal lysyl 
oxidase (LOX) inhibition or inactivation of the LOX gene, which 
interferes with elastin and collagen synthesis, leads to alveolar 
septation impairment30, 31). In various pathological conditions 
leading to impaired alveolarization, such as in a premature lamb 
BPD model32), a transgenic arrested alveolarization model in 
mice33), mechanically ventilated newborn mice34), and congenital 
diaphragmatic hernia35), elastin synthesis was consistently disrupted. 
Thick and tortuous elastic fibers formed disorganized meshwork 
along alveolar walls instead of their normal location at septal tips.

Control of myofibroblast differentiation and migration

Transforming growth factor β1 (TGF-β1) plays a crucial role in 
lung myofibroblast differentiation36). In vitro TGF-β1 stimulates 
smooth muscle actin and tropoelastin expression in lung fibroblasts 
37). In rats, active TGF-β1 and TGF-β receptors increase before 
alveolar septation. Mice devoid of smad3, a major intracellular 
downstream signal transducer in the TGF-β1 pathway, show 
inhibited alveolarization with concomitant decreased expression 
of tropoelastin38, 39). As alveolar septation begins, expression and 
localization of TGF-β family members and bone morphogenetic 

proteins (BMPs) concurrently are changed40). This indicates that 
these proteins are involved in alveolar septation. TGF-β also plays 
a role in lung fibrosis development41). TGF-β is also increased 
in preterm infants with BPD and excessive TGF-β expression is 
associated with alveolarization inhibition in neonatal animals42, 

43). Hyperoxia increases TGF-β expression and induces excessive 
myofibroblast differentiation, but impairs BMP signaling44, 45). 
These findings suggest that precise balance of control between 
TGF-β and BMP signaling is essential to alveolar septation. 

Platelet-derived growth factor A (PDGF-A) also plays a crucial 
role in alveolar septation. Disruption of the PDGF-A gene results 
in failure of elastic fiber deposition in saccular walls and secondary 
septation. PDGF-A is produced by epithelial cells and acts as a 
chemoattractant, allowing myofibroblast precursors expressing 
PDGFRα to migrate to peripheral locations46). Thus, PDGFRα 

expression by alveolar myofibroblasts is not only a marker, but also 
has functional consequences. 

Insulin-like growth factor I (IGF-I) released by epithelial cells 
is involved in myofibroblast proliferation, differentiation, and 
migration. Exogenous IGF-I enhanced migration and proliferation 
of fibroblasts in vitro and the extent of alveolar development was 
well correlated with IGF-I levels in animal models47, 48). IGF-I 
increases α-smooth muscle actin expression and collagen synthesis 
in developing lung fibroblasts49). 

Fibroblast growth factor (FGF) signaling in 
alveolarization

Fibroblast growth factors (FGFs) play crucial roles in various steps 
of lung development50) and are mediated by tyrosine kinase receptors 
(FGFR1-4)51). Alveolar septation coincides with increased FGFR3 
and FGFR4 expression52). In mice devoid of both receptors, alveolar 
septation did not occur, but myofibroblasts were present and elastin 
formation occurred. However, elastin deposition occurred at atypical 
locations other than tip of growing septa and elastin formation 
failed to cease and contined to accumulate into adulthood53). FGF2 
down-regulates elastin synthesis and LOX activity and is thus 
considered involved in septal elastogenesis arrest54, 55). Unlike FGF2, 
FGF18 appears to be involved in elastogenesis. An increased FGF18 
level coincident with the beginning of alveolar septation has been 
observed in human fetal lung and postnatal rat lung56). FGF18 
coordinately up-regulates tropoelastin and LOX expression in 
isolated rat lung fibroblasts 56). FGF18 expression markedly decreases 
in alveolarization arrest animal models induced by hyperoxia57). 
FGF18 expression is also reduced in the hypoplastic lung of human 
fetuses with congenital diaphragmatic hernia58). Enhancement of 

Fig. 2. Alpha-smooth muscle actin staining in P14 rat lung (Magnification 
×400). Alveolar myofibroblasts are located at the secondary septal 
crests (arrow heads) and tips of secondary septa (arrows). 
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lung growth coincides with the restoration of FGF18 expression, 
elastic fiber density and location, and alveolar septation58). FGF7 
(keratinocyte growth factor) is expressed exclusively in interstitial 
cells, but its specific receptor, FGFR2IIIb, is found only in epithelial 
cells59, 60). This implies that FGF7 may be involved in pulmonary 
mesenchymal-epithelial interactions. Recently, FGF7 was reported 
to affect alveolar septation by enhancing vascular bed growth61). 
FGF9 controls mesenchymal cell proliferation in the prenatal 
lung and FGF9 signaling is necessary for distal lung capillary 
development 62, 63). 

Alveolarization-related gene expression in 
myofibroblasts

It can be assumed that genes predominantly expressed in 
newly forming septa are involved in alveolarization. Galectin 1, 
a β-galactosidase-binding protein involved in regulation of cell 
proliferation, differentiation, and apoptosis, was concentrated in 
myofibroblasts located at the septal tip with peak level at the time 
of active alveolar septation64). This suggests an important role of 
galectin-1 in alveolarization. In fibroblasts isolated from developing 
rat lungs, 2 groups of genes showed markedly opposite expression 
patterns before, during, and after alveolar septation65). Genes up-
regulated during septation and down-regulated afterward are the 
transcription factors Hoxa2, 4, 5, and retinoid X receptor γ (RXR 
γ), and 3 genes involved in Wnt signaling, Wnt5a, Norrie disease 
protein (Ndp), and the receptor frizzled 1 (Fzd1). Their protein 
products were detected in the septal crest and tips of growing septa. 
Fzd1 is reported to be involved in myofibroblast proliferation 
and differentiation66). Genes down-regulated during septation 
and up-regulated thereafter include cartilage oligomeric protein, 
osteopontin, osteoactivin, TnX, and schlafen 4. Their expression 
profiles suggest involvement in the alveolar wall thinning and 
microvascular maturation phases. Notably, expression of genes up- 
and down-regulated during septation decreased or was enhanced, 
respectively, in arrested alveolarization models65). This observation 
suggests that alveolarization not only involves up-regulation of 
specific genes but also requires down-regulation of other sets of 
genes.

Conclusion

Lung interstitial cells, especially alveolar myofibroblasts, are 
essential for secondary septation, a critical process in alveolarization. 
The locations of myofibroblasts during lung development and 
their disappearance after the completion of alveolarization imply 

their crucial role in the formation of new gas exchange units. The 
differentiation and migration of myofibroblasts is strictly controlled 
by various mediators and genes. Thus, any disruption in control 
pathways may lead to abnormal alveolarization. To increase the 
understanding of BPD, a representative disorder of disrupted 
alveolarization, fine mechanisms involved in survival, cell-cell 
interactions, and disappearance of lung myofibroblasts should be 
searched. 
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