References
- Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006;69:213-7. https://doi.org/10.1038/sj.ki.5000054
- el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O. Renal fibrosis: insights into pathogenesis and treatment. Int J Biochem Cell Biol 1997;29:55-62. https://doi.org/10.1016/S1357-2725(96)00119-7
- Eitner F, Floege J. Novel insights into renal fibrosis. Curr Opin Nephrol Hypertens 2003;12:227-32. https://doi.org/10.1097/00041552-200305000-00002
- Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998;339:1448-56. https://doi.org/10.1056/NEJM199811123392007
- Zeisberg M, Soubasakos MA, Kalluri R. Animal models of renal fibrosis. Methods Mol Med 2005;117:261-72.
- Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997;185:1371-80. https://doi.org/10.1084/jem.185.7.1371
- Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, et al. Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 1996;10:2981-92. https://doi.org/10.1101/gad.10.23.2981
- Miner JH, Sanes JR. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol 1996;135:1403-13. https://doi.org/10.1083/jcb.135.5.1403
- Hamano Y, Grunkemeyer JA, Sudhakar A, Zeisberg M, Cosgrove D, Morello R, et al. Determinants of vascular permeability in the kidney glomerulus. J Biol Chem 2002;277:31154-62. https://doi.org/10.1074/jbc.M204806200
- Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002;110:341-50. https://doi.org/10.1172/JCI0215518
- Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 2002;11:651-9. https://doi.org/10.1093/hmg/11.6.651
- Assmann KJ, van Son JP, Dijkman HB, Mentzel S, Wetzels JF. Antibody-induced albuminuria and accelerated focal glomerulosclerosis in the Thy-1.1 transgenic mouse. Kidney Int 2002;62:116-26. https://doi.org/10.1046/j.1523-1755.2002.00428.x
- Thornhill BA, Burt LE, Chen C, Forbes MS, Chevalier RL. Variable chronic partial ureteral obstruction in the neonatal rat: a new model of ureteropelvic junction obstruction. Kidney Int 2005;67:42-52. https://doi.org/10.1111/j.1523-1755.2005.00052.x
- Chevalier RL, Thornhill BA, Wolstenholme JT, Kim A. Unilateral ureteral obstruction in early development alters renal growth: dependence on the duration of obstruction. J Urol 1999;161:309-13. https://doi.org/10.1016/S0022-5347(01)62137-2
- Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000;15:290-301. https://doi.org/10.1007/s004670000461
- Wang SN, Lapage J, Hirschberg R. Glomerular ultrafiltration and apical tubular action of IGF-I, TGF-beta, and HGF in nephrotic syndrome. Kidney Int 1999;56:1247-51. https://doi.org/10.1046/j.1523-1755.1999.00698.x
- Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 1997;8:1537-45.
- Grandaliano G, Gesualdo L, Ranieri E, Monno R, Montinaro V, Marra F, et al. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenetic role in interstitial monocytes recruitment. J Am Soc Nephrol 1996;7:906-13.
- Lloyd CM, Dorf ME, Proudfoot A, Salant DJ, Gutierrez-Ramos JC. Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. J Leukoc Biol 1997;62:676-80. https://doi.org/10.1002/jlb.62.5.676
- Biancone L, David S, Della Pietra V, Montrucchio G, Cambi V, Camussi G. Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int 1994;45:451-60. https://doi.org/10.1038/ki.1994.59
- Tang S, Sheerin NS, Zhou W, Brown Z, Sacks SH. Apical proteins stimulate complement synthesis by cultured human proximal tubular epithelial cells. J Am Soc Nephrol 1999;10:69-76.
- Ricardo SD, Levinson ME, DeJoseph MR, Diamond JR. Expression of adhesion molecules in rat renal cortex during experimental hydronephrosis. Kidney Int 1996;50:2002-10. https://doi.org/10.1038/ki.1996.522
- Okada H, Moriwaki K, Kalluri R, Takenaka T, Imai H, Ban S, et al. Osteopontin expressed by renal tubular epithelium mediates interstitial monocyte infiltration in rats. Am J Physiol Renal Physiol 2000;278:F110-21. https://doi.org/10.1152/ajprenal.2000.278.1.F110
- Strutz F, Muller GA. Renal fibrosis and the origin of the renal fibroblast. Nephrol Dial Transplant 2006;21:3368-70. https://doi.org/10.1093/ndt/gfl199
- Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol 2002;13:2600-10. https://doi.org/10.1097/01.ASN.0000033611.79556.AE
- Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci U S A 2004;101:8687-92. https://doi.org/10.1073/pnas.0400035101
- Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 1996;74:991-1003.
- Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 2002;307:1-14. https://doi.org/10.1007/s00441-001-0479-6
- Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 2001;108:807-16. https://doi.org/10.1172/JCI200112367
- Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001;108:1853-63. https://doi.org/10.1172/JCI11951
- Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003;284:F243-52. https://doi.org/10.1152/ajpcell.00305.2002
- Ma LJ, Jha S, Ling H, Pozzi A, Ledbetter S, Fogo AB. Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 2004;65:106-15. https://doi.org/10.1111/j.1523-1755.2004.00381.x
- Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 2005;16:1371-83. https://doi.org/10.1681/ASN.2004121070
- Ruiz-Ortega M, Ruperez M, Esteban V, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 2006;21:16-20. https://doi.org/10.1093/ndt/gfi265
- Yayama K, Okamoto H. Angiotensin II-induced vasodilation via type 2 receptor: role of bradykinin and nitric oxide. Int Immunopharmacol 2008;8:312-8. https://doi.org/10.1016/j.intimp.2007.06.012
- Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998;83:1182-91. https://doi.org/10.1161/01.RES.83.12.1182
- Viswanathan M, Tsutsumi K, Correa FM, Saavedra JM. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 1991;179:1361-7. https://doi.org/10.1016/0006-291X(91)91723-P
- Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, et al. Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 2004;109:2296-301. https://doi.org/10.1161/01.CIR.0000128696.12245.57
- Wenzel UO, Krebs C, Benndorf R. The angiotensin II type 2 receptor in renal disease. J Renin Angiotensin Aldosterone Syst 2010;11:37-41. https://doi.org/10.1177/1470320309347787
- Campistol JM, Inigo P, Jimenez W, Lario S, Clesca PH, Oppenheimer F, et al. Losartan decreases plasma levels of TGF-beta1 in transplant patients with chronic allograft nephropathy. Kidney Int 1999;56:714-9. https://doi.org/10.1046/j.1523-1755.1999.00597.x
- Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999;99:2027-33. https://doi.org/10.1161/01.CIR.99.15.2027
- Hegarty NJ, Young LS, Kirwan CN, O'Neill AJ, Bouchier-Hayes DM, Sweeney P, et al. Nitric oxide in unilateral ureteral obstruction: effect on regional renal blood flow. Kidney Int 2001;59:1059-65. https://doi.org/10.1046/j.1523-1755.2001.0590031059.x
- Chen CO, Park MH, Forbes MS, Thornhill BA, Kiley SC, Yoo KH, et al. Angiotensin-converting enzyme inhibition aggravates renal interstitial injury resulting from partial unilateral ureteral obstruction in the neonatal rat. Am J Physiol Renal Physiol 2007;292:F946-55. https://doi.org/10.1152/ajprenal.00287.2006
- Perbal B. CCN proteins: multifunctional signalling regulators. Lancet 2004;363:62-4. https://doi.org/10.1016/S0140-6736(03)15172-0
- Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998;53:853-61. https://doi.org/10.1111/j.1523-1755.1998.00820.x
- Ruperez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003;108:1499-505. https://doi.org/10.1161/01.CIR.0000089129.51288.BA
- Esteban V, Lorenzo O, Ruperez M, Suzuki Y, Mezzano S, Blanco J, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol 2004;15:1514-29. https://doi.org/10.1097/01.ASN.0000130564.75008.F5
- Lin SL, Chen YM, Chien CT, Chiang WC, Tsai CC, Tsai TJ. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol 2002;13:2916-29. https://doi.org/10.1097/01.ASN.0000034909.10994.8A
- Ostendorf T, Kunter U, Grone HJ, Bahlmann F, Kawachi H, Shimizu F, et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 2001;12:909-18.
- Eitner F, Ostendorf T, Van Roeyen C, Kitahara M, Li X, Aase K, et al. Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney. J Am Soc Nephrol 2002;13:910-7.
- Changsirikulchai S, Hudkins KL, Goodpaster TA, Volpone J, Topouzis S, Gilbertson DG, et al. Platelet-derived growth factor-D expression in developing and mature human kidneys. Kidney Int 2002;62:2043-54. https://doi.org/10.1046/j.1523-1755.2002.00662.x
- Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-5. https://doi.org/10.1038/332411a0
- Hargrove GM, Dufresne J, Whiteside C, Muruve DA, Wong NC. Diabetes mellitus increases endothelin-1 gene transcription in rat kidney. Kidney Int 2000;58:1534-45. https://doi.org/10.1046/j.1523-1755.2000.00315.x
- Richter CM. Role of endothelin in chronic renal failure--developments in renal involvement. Rheumatology (Oxford) 2006;45 Suppl 3:Siii36-8.
- Sorokin A, Kohan DE. Physiology and pathology of endothelin-1 in renal mesangium. Am J Physiol Renal Physiol 2003;285:F579-89. https://doi.org/10.1152/ajprenal.00019.2003
- Kon V, Hunley TE, Fogo A. Combined antagonism of endothelin A/B receptors links endothelin to vasoconstriction whereas angiotensin II effects fibrosis. Studies in chronic cyclosporine nephrotoxicity in rats. Transplantation 1995;60:89-95. https://doi.org/10.1097/00007890-199507150-00017
- Guo G, Morrissey J, McCracken R, Tolley T, Klahr S. Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy. Am J Physiol 1999;277:F766-72. https://doi.org/10.1152/ajpcell.1999.277.4.C766
- Lan HY, Nikolic-Paterson DJ, Zarama M, Vannice JL, Atkins RC. Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney Int 1993;43:479-85. https://doi.org/10.1038/ki.1993.70
- Liu Y. Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens 2002;11:23-30. https://doi.org/10.1097/00041552-200201000-00004
- Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004;287:F7-16. https://doi.org/10.1152/ajprenal.00451.2003
- Yang J, Liu Y. Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 2003;284:F349-57. https://doi.org/10.1152/ajpcell.00066.2002
- Mizuno S, Nakamura T. Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol 2004;286:F134-43. https://doi.org/10.1152/ajprenal.00199.2003
- Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003;112:503-16. https://doi.org/10.1172/JCI200317913
- Liu Y, Sun AM, Dworkin LD. Hepatocyte growth factor protects renal epithelial cells from apoptotic cell death. Biochem Biophys Res Commun 1998;246:821-6. https://doi.org/10.1006/bbrc.1998.8676
- Gong R, Rifai A, Tolbert EM, Centracchio JN, Dworkin LD. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis. J Am Soc Nephrol 2003;14:3047-60. https://doi.org/10.1097/01.ASN.0000098686.72971.DB
- Motazed R, Colville-Nash P, Kwan JT, Dockrell ME. BMP-7 and proximal tubule epithelial cells: activation of multiple signaling pathways reveals a novel anti-fibrotic mechanism. Pharm Res 2008;25:2440-6. https://doi.org/10.1007/s11095-008-9551-1
- Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964-8. https://doi.org/10.1038/nm888
- Wang S, Hirschberg R. BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 2003;284:F1006-13. https://doi.org/10.1152/ajpcell.00258.2002
- Chevalier RL, Goyal S, Kim A, Chang AY, Landau D, LeRoith D. Renal tubulointerstitial injury from ureteral obstruction in the neonatal rat is attenuated by IGF-1. Kidney Int 2000;57:882-90. https://doi.org/10.1046/j.1523-1755.2000.057003882.x
- Eddy AA. Can renal fibrosis be reversed? Pediatr Nephrol 2005;20:1369-75. https://doi.org/10.1007/s00467-005-1995-5
- Edgtton KL, Gow RM, Kelly DJ, Carmeliet P, Kitching AR. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int 2004;66:68-76. https://doi.org/10.1111/j.1523-1755.2004.00707.x
- Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. Faseb J 2006;20:1898-900. https://doi.org/10.1096/fj.06-5898fje
- Boor P, Sebekova K, Ostendorf T, Floege J. Treatment targets in renal fibrosis. Nephrol Dial Transplant 2007;22:3391-407. https://doi.org/10.1093/ndt/gfm393
Cited by
- Suramin Alleviates Glomerular Injury and Inflammation in the Remnant Kidney vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0036194
- Organ fibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists vol.11, pp.5, 2010, https://doi.org/10.1016/s1499-3872(12)60210-0
- Iron chelator alleviates tubulointerstitial fibrosis in diabetic nephropathy rats by inhibiting the expression of tenascinC and other correlation factors vol.44, pp.3, 2010, https://doi.org/10.1007/s12020-013-9907-0
- Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease vol.17, pp.4, 2013, https://doi.org/10.1007/s10157-013-0781-0
- Protective Effect of Triptolide against Glomerular Mesangial Cell Proliferation and Glomerular Fibrosis in Rats Involves the TGF- β 1/Smad Signaling Pathway vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/814089
- Connective tissue growth factor induces tubular epithelial to mesenchymal transition through the activation of canonical Wnt signaling in vitro vol.37, pp.1, 2010, https://doi.org/10.3109/0886022x.2014.967699
- Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells vol.308, pp.4, 2015, https://doi.org/10.1152/ajprenal.00429.2014
- Nerve growth factor exposure promotes tubular epithelial-mesenchymal transitionviaTGF-β1 signaling activation vol.33, pp.3, 2010, https://doi.org/10.3109/08977194.2015.1054989
- Verbascoside Reverses TGF- β1-Induced Renal Cellular Fibrosis vol.3, pp.6, 2010, https://doi.org/10.15406/jdmdc.2016.03.00083
- Renal Fibrosis and Mitochondrial Biogenesis vol.3, pp.6, 2010, https://doi.org/10.15406/jdmdc.2016.03.00085
- Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells vol.241, pp.3, 2010, https://doi.org/10.1177/1535370215605586
- Ablation of endothelial prolyl hydroxylase domain protein‐2 promotes renal vascular remodelling and fibrosis in mice vol.21, pp.9, 2010, https://doi.org/10.1111/jcmm.13117
- The effects of quercetin on oxidative stress and fibrosis markers in chronic kidney disease rat model vol.26, pp.3, 2010, https://doi.org/10.13181/mji.v26i3.1462
- Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism vol.13, pp.1, 2019, https://doi.org/10.1080/19336918.2019.1638691
- Clinical trial for conventional medicine integrated with traditional Chinese medicine (TCM) in the treatment of patients with chronic kidney disease vol.99, pp.21, 2010, https://doi.org/10.1097/md.0000000000020234
- miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6 vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/6263921
- Identification of the Perturbed Metabolic Pathways Associating With Renal Fibrosis and Evaluating Metabolome Changes of Pretreatment With Astragalus polysaccharide Through Liquid Chromatography Quadru vol.10, pp.None, 2010, https://doi.org/10.3389/fphar.2019.01623
- Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway vol.19, pp.None, 2020, https://doi.org/10.1016/j.omtn.2020.01.002
- Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts vol.131, pp.5, 2010, https://doi.org/10.1172/jci143645
- Extracellular Vesicles and Renal Fibrosis: An Odyssey toward a New Therapeutic Approach vol.22, pp.8, 2010, https://doi.org/10.3390/ijms22083887