DOI QR코드

DOI QR Code

층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts

  • Yang, Ki-Seon (Department of Industrial Chemistry, Sangmyung University) ;
  • Chang, Kil-Sang (Department of Industrial Chemistry, Sangmyung University)
  • 투고 : 2010.10.14
  • 심사 : 2010.12.17
  • 발행 : 2010.12.31

초록

온실가스로 알려진 $N_2O$의 촉매 분해는 최소한 670 K 이상의 온도가 요구되는 난해한 공정으로 알려져 있다. 본 연구는 CO 환원제와 더불어 473 K의 저온에서도 $N_2O$를 전량 분해될 정도로 높은 활성을 나타내는 혼합금속산화물(mixed metal oxide: MMO) 촉매에 Ce을 첨가함으로서 나타나는 $N_2O$ 분해활성에의 영향을 검토하기 위하여 수행되었다. MMO 촉매는 Co 및 Al 외에 Rh과 Pd을 사용하고, 여기에 Ce을 미량 첨가하여 공침전법으로 제조하였으며, 결과적으로 Ce 함량이 증가함에 따라 촉매 표면적은 감소하고 $N_2O$의 직접분해 활성이 감소하는 현상이 나타났다. 그러나 CO 환원제의 분위기 하에서는 이러한 활성 감소를 상쇄하고도 남을 정도의 높은 $N_2O$ 분해활성을 나타냈으며 Ce 첨가비율에 따른 활성저하도 줄일 수 있어서 MMO 촉매의 물리적 안정성 증대를 위해 Ce을 첨가할 경우 CO 환원제에 의한 $N_2O$ 환원 반응계의 활성 안정성도 유지될 수 있는 것으로 확인되었다.

Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

키워드

참고문헌

  1. Nevison, C., "Review of the IPCC Methodology for Estimating Nitrous Oxide Emissions Associated with Agricultural Leaching and Runoff," Chemosphere-Global Change Sci., 2, 493-500 (2000). https://doi.org/10.1016/S1465-9972(00)00013-1
  2. Scott, M. J., Sands, R. D., Rosenberg, N. J., and Izaurralde, R. C., "Future $N_2O$ from US Agriculture: Projecting Effects of Changing Land Use, Agricultural Technology, and Climate on $N_2O$ Emissions," Global Environ. Change, 12, 105-115 (2002). https://doi.org/10.1016/S0959-3780(02)00005-5
  3. Yates, M., Martin, J. A., Martin-Luengo, A., Suarez, S., and Blanco, J., "$N_2O$ Formation in The Ammonia Oxidation and in the SCR Process with $V_2O_5-WO_3$ Catalysts," Catal. Today, 107-108, 120-125 (2005). https://doi.org/10.1016/j.cattod.2005.07.015
  4. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, A., "Heterogeneous Catalytic Decomposition of Nitrous Oxide," Appl. Catal. B: Environ., 9, 25-64 (1996). https://doi.org/10.1016/0926-3373(96)90072-7
  5. Drago, R., Jurczyk, K, and Kob, N., "Catalyzed Decomposition of N2O on Metal Oxide Supports," Appl. Catal. B: Environ., 13, 69-79 (1997). https://doi.org/10.1016/S0926-3373(96)00088-4
  6. Kannan, S., "Decomposition of Nitrous Oxide over the Catalysts Derived from Hydrotalcite-like Compounds," Appl. Clay Sci., 13, 347-362 (1998). https://doi.org/10.1016/S0169-1317(98)00032-5
  7. Dann, T. W., Schulz, K. H., Mann, M., and Collings, M., "Supported Rhodium Catalysts for Nitrous Oxide Decomposition in the Presence of NO, $CO_2,\;SO_2$ and CO," Appl. Catal. B: Environ., 6, 1-10 (1995). https://doi.org/10.1016/0926-3373(95)00006-2
  8. Tichit, D., Medina, F., Coq, B., and Dutartre, R., "Activation under Oxidizing and Reducing Atmospheres of Ni-containing Layered Double Hydroxides," Appl. Catal. A: Gen., 159, 241-258 (1997). https://doi.org/10.1016/S0926-860X(97)00085-9
  9. Armor, J. N., Braymer, T. A., Farris, T. S., Li, Y., Petrocelli, F. P., Weist, E. L., Kannan, S., and Swamy, C. S., "Calcined Hydrotalcites for the Catalytic Decomposition of $N_2O$ in Simulated Process Streams," Appl. Catal. B: Environ., 7, 397- 406 (1996). https://doi.org/10.1016/0926-3373(95)00048-8
  10. Chang, K. S., Song, H., Park, Y.-S., and Woo, J.-W., "Analysis of $N_2O$ Decomposition over Fixed Bed Mixed Metal Oxide Catalysts Made from Hydrotalcite-type Precursors," Appl. Catal. A: Gen., 273, 223-231 (2004). https://doi.org/10.1016/j.apcata.2004.06.036
  11. Kannan, S., and Swamy, C., "Catalytic Decomposition of Nitrous Oxide on in situ Generated Thermally Calcined Hydrotalcites," Appl. Catal. B: Environ., 3, 109-116 (1994). https://doi.org/10.1016/0926-3373(93)E0036-B
  12. Yoshida, M., Nobukawa, T., Ito, S., Tomishige, K., and Kunimori, K., "Structure Sensitivity of Ion-exchanged Fe-MFI in the Catalytic Reduction of Nitrous Oxide by Methane under an Excess Oxygen Atmosphere," J. Catal., 223, 454-464 (2004). https://doi.org/10.1016/j.jcat.2004.02.002
  13. Van den Brink, R. W., Booneveld, S., Pels, J. R., Bakker, D. F, and Verhaak, M.J.F.M., "Catalytic Removal of $N_2O$ in Model Flue Gases of a Mitric Acid Plant Using a Promoted Fe Zeolite," Appl. Catal. B: Environ., 32, 73-81 (2001). https://doi.org/10.1016/S0926-3373(00)00294-0
  14. Nobukawa, T., Yoshida, M., Okumura, K., Tomishige, K., and Kunimori K., "Effect of Reductions in $N_2O$ Reduction over Fe-MFI Catalysts," J. Catal., 229(2), 374-388 (2005). https://doi.org/10.1016/j.jcat.2004.11.009
  15. Yamada, K., Kondo, S., and Segawa, K., "Selective Catalytic Reduction of Nitrous Oxide Over Fe-ZSM-5: the Effect of Ion- Exchange Level," Micropor. Mesopor. Mater., 35-36, 227-234 (2000). https://doi.org/10.1016/S1387-1811(99)00223-1
  16. Satsuma, A., Maeshima, H., Watanabe, K., Suzuki, K., and Hattori, T., "Effects of Methane and Oxygen on Decomposition of Nitrous Oxide over Metal Oxide Catalysts," Catal. Today, 63, 347-353 (2000). https://doi.org/10.1016/S0920-5861(00)00478-8
  17. Nobukawa. T., Yoshida. M., Kameoka. S., Ito. S., Tomishige. K., and Kunimori. K., "Selective Catalytic Reduction of $N_2O\;with\;CH_4\;and\;N_2O$ Decomposition over Fe-zeolite Catalysts," Stud. Surf. Sci. Catal., 154(3), 2514-2521 (2004).
  18. Delahay, G., Mauvezin, M., Guzman-Vargas, A., and Coq, B., "Effect of the Reductant Nature on the Catalytic Removal of $N_2O$ on Fe-zeolite-b Catalysts," Catal. Commun., 3, 385-389 (2002). https://doi.org/10.1016/S1566-7367(02)00157-7
  19. Debbagh Bouttarbouch, M. N., Garcia Cortes, J. M., Soussi El Begrani, M., Salinas Martinez de Lecea, C., and Perez-Ramirez, J., "Catalytic Conversion of $N_2O$ over FeZSM-5 Zeolite in the Presence of CO and NO," Appl. Catal. B: Environ., 54, 115-123 (2004). https://doi.org/10.1016/j.apcatb.2004.06.013
  20. Perez-Ramirez, J., Santhosh Kumar, M., and Bruckner, A., "Reduction of $N_2O$ with CO over FeMFI Zeolites: Influence of the Preparation Method on the Iron Species and Catalytic Behavior," J. Catal., 223, 13-27 (2004). https://doi.org/10.1016/j.jcat.2004.01.007
  21. Yu, Q., Liu, L., Dong, L., Li, D., Liu, B., Gao, F., Sun, K., Dong, L., and Chen, Y., "Effects of Ce/Zr Ratio on the Reducibility, Adsorption and Catalytic Activity of $CuO/Ce_{x}Zr_{1}−_{.x}O_{2}/-Al_{2}O_{3}$ Catalysts for NO Reduction by CO", Appl. Catal. B: Environ., 96, 350-360 (2010). https://doi.org/10.1016/j.apcatb.2010.02.032
  22. Granger, P., Dujardin, C., Paul, J.-F., and Leclercq, G., "An Overview of Kinetic and Spectroscopic Investigations on Three-Way Catalysts: Mechanistic Aspects of the CO+NO and $CO+N_2O$ Reactions," J. Mol. Catal. A: Chem., 228, 241-253 (2005). https://doi.org/10.1016/j.molcata.2004.09.081
  23. Kaspar, J., Fornasiero, P., and Graziani, M., "Use of CeO2-based Oxides in the Three-way Catalysis," Catal. Today, 50, 285-298 (1999). https://doi.org/10.1016/S0920-5861(98)00510-0
  24. Imamura, S., Shono, M., Okamoto, N., Hamada, A. and Ishida, S., "Effect of Cerium on the Mobility of Oxygen on Manganese Oxides," Appl. Catal. A: Gen., 142, 279 (1996). https://doi.org/10.1016/0926-860X(96)00095-6
  25. Moroz, T., Razvorotneva, L., Grigorieva, T., and Mazurov, M., "Formation of Spinel from Hydrotalcite-like Minerals and Destruction of Chromite Implanted by Inorganic Salts," Appl. Clay Sci., 18, 29-36 (2001). https://doi.org/10.1016/S0169-1317(00)00027-2
  26. Prevot, V., Forano, C., and Besse, J. P., "Hybrid Derivatives of Layered Double Hydroxides," Appl. Clay Sci., 18, 3-15 (2001). https://doi.org/10.1016/S0169-1317(00)00025-9
  27. Chang, K. S., and You, K.-C., "The Effects of $SO_2\;and\;NH_3\;on\;the\;N_2O$ Reduction with CO over MMO Catalyst," J. Korean Ind. Eng. Chem., 20, 653-657 (2009).
  28. Chang, K. S., and Peng, X., "NO Presence Effects on the Reduction of N2O by CO over Al-Pd-Co oxide catalyst", J. Ind. Eng. Chem., 16(3), 455-460 (2010). https://doi.org/10.1016/j.jiec.2010.01.046
  29. Dandl, H. and Emig, G., "Mechanistic Approach for the Kinetics of the Decomposition of Nitrous Oxide over Calcined Hydrotalcites," Appl. Catal. A: Gen., 168, 261-268 (1998). https://doi.org/10.1016/S0926-860X(97)00357-8
  30. Chang, K. S., Lee, H.-J., Park, Y.-S., and Woo, J.-W., "Enhanced Performances of $N_2O$ Destruction in the Presence of CO over the Mixed Metal Oxide Catalysts Derived from Hydrotalcite-type Precursors," Appl. Catal. A: Gen., 309, 129-138 (2006). https://doi.org/10.1016/j.apcata.2006.05.007