DOI QR코드

DOI QR Code

Chlorophyll α fluorescence as an indicator of establishment of Zostera marina transplants on the southern coast of Korea

  • Li, Wen-Tao (Department of Biological Sciences, Pusan National University) ;
  • Park, Jung-Im (Department of Biological Sciences, Pusan National University) ;
  • Park, Sang-Rul (Department of Biological Sciences, Pusan National University) ;
  • Zhang, Xiu-Mei (Department of Marine Fisheries, Ocean University of China) ;
  • Lee, Kun-Seop (Department of Biological Sciences, Pusan National University)
  • Received : 2010.04.03
  • Accepted : 2010.05.06
  • Published : 2010.06.15

Abstract

To test the feasibility of using chlorophyll ${\alpha}$ fluorescence to assess the establishment success of seagrass transplants, photosynthetic characteristics of eelgrass Zostera marina transplants were measured using a Diving-pulsed amplitude modulation fluorometer in Jindong Bay on the southern coast of Korea. Maximum quantum yield ($F_v/F_m$), photosynthetic efficiency ($\alpha$), saturating irradiance ($E_k$) and maximum electron transport rate ($ETR_{max}$) of transplants and reference plants in a nearby transplant site were measured using the fluorometer for 5 months. Additionally, shoot morphology, individual shoot weight and productivity of transplants and reference plants were also monitored. Shoot height, leaf weight and productivity of transplants were significantly reduced during the first two or three months after transplantation compared to those of reference plants, and then increased to the levels of reference plants Characteristics of chlorophyll a fluorescence, including $F_v/F_m$, $\alpha$, $E_k$ and $ETR_{max}$ of transplants were also significantly reduced in the initial period, but recovered slightly sooner than shoot morphology or leaf productivity. These results indicated that after transplantation, Z. marina transplant photosynthesis recovered faster than shoot morphology, biomass or productivity. Thus, chlorophyll a fluorescence can be used as an indicator for early assessment of the status of eelgrass transplants without destructive sampling.

Keywords

References

  1. Adams, W. W. III. & Demmig-Adams, B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In Papageorgiou, G. C. & Govindjee (Eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 583-604.
  2. Baker, N. R. & Oxborough, K. 2004. Chlorophyll fluorescence as a probe of photosynthetic productivity. In Papageorgiou, G. C. & Govindjee (Eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 65-82.
  3. Balestri, E., Piazzi, L. & Cinelli, F. 1998. Survival and growth of transplanted and natural seedlings of Posidonia oceanica (L.) Delile in a damaged coastal area. J. Exp. Mar. Biol. Ecol 228:209-225. https://doi.org/10.1016/S0022-0981(98)00027-6
  4. Becker, S., Walter, B. & Bischof, K. 2009. Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Bot. Mar. 52:609-616. https://doi.org/10.1515/BOT.2009.079
  5. Beer, S. & Bjork, M. 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat. Bot. 66:69-76. https://doi.org/10.1016/S0304-3770(99)00020-0
  6. Beer, S., Mtolera, M., Lyimo, T. & Bjork, M. 2006. The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat. Bot. 84:367-371. https://doi.org/10.1016/j.aquabot.2005.11.007
  7. Beer, S., Vilenkin, B., Weil, A., Veste, M., Susel, L. & Eshel, A. 1998. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar. Ecol. Prog. Ser. 174:293-300. https://doi.org/10.3354/meps174293
  8. Biber, P. D., Kenworthy, W. J. & Paerl, H. W. 2009. Experimental analysis of the response and recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. J. Exp. Mar. Biol. Ecol. 369:110-117. https://doi.org/10.1016/j.jembe.2008.10.031
  9. Bischof, K., Hanelt, D. & Wiencke, C. 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555-562. https://doi.org/10.1007/s004250000313
  10. Bite, J. S., Campbell, S. J., McKenzie, L. J. & Coles, R. G. 2007. Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar. Biol. 152:405-414. https://doi.org/10.1007/s00227-007-0700-6
  11. Bruhn, J. & Gerard, V. A. 1996. Photoinhibition and recovery of the kelp Laminaria saccharina at optimal and superoptimal temperatures. Mar. Biol. 125:639-648. https://doi.org/10.1007/BF00349245
  12. Campbell, S., Miller, C., Steven, A. & Stephens, A. 2003. Photosynthetic responses of two temperate seagrasses across a water quality gradient using chlorophyll fluorescence. J. Exp. Mar. Biol. Ecol. 291:57-78. https://doi.org/10.1016/S0022-0981(03)00090-X
  13. Campbell, S. J., Kerville, S. P., Coles, R. G. & Short, F. 2008. Photosynthetic responses of subtidal seagrasses to a daily light cycle in Torres Strait: a comparative study. Continental Shelf Res. 28:2275-2281. https://doi.org/10.1016/j.csr.2008.03.038
  14. Campbell, S. J., McKenzie, L. J. & Kerville, S. P. 2006. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J. Exp. Mar. Biol. Ecol. 330:455-468. https://doi.org/10.1016/j.jembe.2005.09.017
  15. Campbell, S. J., McKenzie, L. J., Kerville, S. P. & Bite, J. S. 2007. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuar. Coast. Shelf Sci. 73:551-562. https://doi.org/10.1016/j.ecss.2007.02.014
  16. Collier, C. J., Lavery, P. S., Ralph, P. J. & Masini, R. J. 2009. Shade-induced response and recovery of the seagrass Posidonia sinuosa. J. Exp. Mar. Biol. Ecol. 370:89-103. https://doi.org/10.1016/j.jembe.2008.12.003
  17. Cullen, J. J., Yentsch, C. M., Cucci, T. L. & MacIntyre, H. L. 1988. Autofluorescence and other optical properties as tools in biological oceanography. SPIE 925:149-156.
  18. Durako, M. J., Kunzelman, J. I., Kenworthy, W. J. & Hammerstrom, K. K. 2003. Depth-related variability in the photobiology of two populations of Halophila johnsonii and Halophila decipiens. Mar. Biol. 142:1219-1228. https://doi.org/10.1007/s00227-003-1038-3
  19. Evans, N. T. & Short, F. T. 2005. Functional trajectory models for assessment of transplanted eelgrass, Zostera marina L., in the Great Bay Estuary, New Hampshire. Estuaries 28:936-947. https://doi.org/10.1007/BF02696021
  20. Figueroa, F. L., Jimenez, C., Vinegla, B., Perez- Rodriguez, E., Aguilera, J., Flores-Moya, A., Altamirano, M., Lebert, M. & Hader, D. P. 2002. Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar. Ecol. Prog. Ser. 230:59-70. https://doi.org/10.3354/meps230059
  21. Fishman, J. R., Orth, R. J., Marion, S. & Bieri, J. 2004. A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake Bay. Restor. Ecol. 12:214-219. https://doi.org/10.1111/j.1061-2971.2004.00314.x
  22. Fonseca, M. S., Kenworthy, W. J. & Courtney, F. X. 1996. Development of planted seagrass beds in Tampa Bay, Florida, USA. 1. Plant components. Mar. Ecol. Prog. Ser. 132:127-139. https://doi.org/10.3354/meps132127
  23. Henley, W. J. 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29:729-739. https://doi.org/10.1111/j.0022-3646.1993.00729.x
  24. Horn, L. E., Paling, E. I. & van Keulen, M. 2009. Photosynthetic recovery of transplanted Posidonia sinuosa, Western Australia. Aquat. Bot. 90:149-156. https://doi.org/10.1016/j.aquabot.2008.08.002
  25. Kahn, A. E. & Durako, M. J. 2008. Photophysiological responses of Halophila johnsonii to experimental hyposaline and hyper-CDOM conditions. J. Exp. Mar. Biol. Ecol. 367:230-235. https://doi.org/10.1016/j.jembe.2008.10.006
  26. Kahn, A. E. & Durako, M. J. 2009. Photosynthetic tolerances to desiccation of the co-occurring seagrasses Halophila johnsonii and Halophila decipiens. Aquat. Bot. 90:195-198. https://doi.org/10.1016/j.aquabot.2008.07.003
  27. Koch, M. S., Schopmeyer, S. A., Kyhn-Hansen, C., Madden, C. J. & Peters, J. S. 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquat. Bot. 86:14-24. https://doi.org/10.1016/j.aquabot.2006.08.003
  28. Lamote, M. & Dunton, K. H. 2006. Effects of drift macroalgae and light attenuation on chlorophyll fluorescence and sediment sulfides in the seagrass Thalassia testudinum. J. Exp. Mar. Biol. Ecol. 334:174-186. https://doi.org/10.1016/j.jembe.2006.01.024
  29. Lan, C. Y., Kao, W. Y., Lin, H. J. & Shao, K. T. 2005. Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Mar. Biol. 148:25-34. https://doi.org/10.1007/s00227-005-0053-y
  30. Lee, K. S. & Park, J. I. 2008. An effective transplanting technique using shells for restoration of Zostera marina habitats. Mar. Pollut. Bull. 56:1015-1021. https://doi.org/10.1016/j.marpolbul.2008.02.010
  31. Lepoint, G., Vangeluwe, D., Eisinger, M., Paster, M., van Treeck, P., Bouquegneau, J. M. & Gobert, S. 2004. Nitrogen dynamics in Posidonia oceanica cuttings: implications for transplantation experiments. Mar. Pollut. Bull. 48:465-470. https://doi.org/10.1016/j.marpolbul.2003.08.023
  32. Moore, K. A., Neckles, H. A. & Orth, R. J. 1996. Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay. Mar. Ecol. Prog. Ser. 142:247-259. https://doi.org/10.3354/meps142247
  33. Orth, R. J., Harwell, M. C. & Fishman, J. R. 1999. A rapid and simple method for transplanting eelgrass using single, unanchored shoots. Aquat. Bot. 64:77-85. https://doi.org/10.1016/S0304-3770(99)00007-8
  34. Park, J. I. & Lee, K. S. 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull. 54:1238-1248. https://doi.org/10.1016/j.marpolbul.2007.03.020
  35. Peralta, G., Bouma, T. J., van Soelen, J., Perez-Llorens, J. L. & Hernandez, I. 2003. On the use of sediment fertilization for seagrass restoration: a mesocosm study on Zostera marina L. Aquat. Bot. 75:95-110. https://doi.org/10.1016/S0304-3770(02)00168-7
  36. Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701.
  37. Ralph, P. J. & Burchett, M. D. 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot. 51:55-66. https://doi.org/10.1016/0304-3770(95)00456-A
  38. Ralph, P. J. & Burchett, M. D. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut. 103:91-101. https://doi.org/10.1016/S0269-7491(98)00121-3
  39. Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237. https://doi.org/10.1016/j.aquabot.2005.02.006
  40. Ralph, P. J., Gademann, R. & Dennison, W. C. 1998. In situ seagrass photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Mar. Biol. 132: 367-373. https://doi.org/10.1007/s002270050403
  41. Seddon, S. & Cheshire, A. C. 2001. Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Mar. Ecol. Prog. Ser. 220:119-130. https://doi.org/10.3354/meps220119
  42. Sharon, Y. & Beer, S. 2008. Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates. Aquat. Bot. 88:273-276. https://doi.org/10.1016/j.aquabot.2007.11.006
  43. Tanaka, Y. & Nakaoka, M. 2004. Emergence stress and morphological constraints affect the species distribution and growth of subtropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 284:117-131. https://doi.org/10.3354/meps284117
  44. van Tussenbroek, B. I. 1996. Leaf dimensions of transplants of Thalassia testudinum in a Mexican Caribbean reef lagoon. Aquat. Bot. 55:133-138. https://doi.org/10.1016/S0304-3770(96)01068-6
  45. Villafane, V. E., Marcoval, M. A. & Helbling, E. W. 2004. Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar. Ecol. Prog. Ser. 284:23-34. https://doi.org/10.3354/meps284023
  46. Zieman, J. C. 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4:139-143. https://doi.org/10.1016/0044-8486(74)90029-5
  47. Zimmerman, R. C., Reguzzoni, J. L. & Alberte, R. S. 1995. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: role of light availability on metabolism, growth and survival. Aquat. Bot. 51:67-86. https://doi.org/10.1016/0304-3770(95)00472-C

Cited by

  1. Elevational distribution and photosynthetic characteristics of the invasive tree Spathodea campanulata on the island of Tahiti (South Pacific Ocean) vol.30, 2016, https://doi.org/10.3897/neobiota.30.8201
  2. Photosynthetic activity of Triticum dicoccum × Triticum aestivum alloplasmic lines during vegetation in connection with productivity traits under varying moister conditions vol.59, pp.1, 2010, https://doi.org/10.32615/ps.2021.003