DOI QR코드

DOI QR Code

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Received : 2010.02.10
  • Accepted : 2010.04.07
  • Published : 2010.06.20

Abstract

The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.

Keywords

References

  1. Carlin, R. L.; Van Duyneveldt, A. J. Magnetic Properties of Transition Metal Compounds; Springer-Verlag: New York, 1977.
  2. Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin-Heidelberg, 1986.
  3. Kahn, O. Molecular Magnetism; VCH: New York, 1993.
  4. Miller, J. S.; Drillon, M. Magnetism: Molecules to Materials; Wiley-VCH: Weinheim, 2002-2005; Vol. I-V.
  5. Thompson, L. K. Coord. Chem. Rev. 2005, 249, 2549-2730. https://doi.org/10.1016/j.ccr.2005.09.002
  6. Entley, W. R.; Girolami, G. S. Science 1995, 268, 397. https://doi.org/10.1126/science.268.5209.397
  7. Escuer, A.; Aromi, G. Eur. J. Inorg. Chem. 2006, 4721.
  8. Ribas, J.; Escuer, A.; Monfort, M.; Vicente, R.; Cortes, R.; Lezama, L.; Rojo, T. Coord. Chem. Rev. 1999, 195, 1027. https://doi.org/10.1016/S0010-8545(99)00051-X
  9. Karmakar, T. K.; Ghosh, B. K.; Usman, A.; Fun, H. K.; Riviere, E.; Mallah, T.; Aromi, G.; Chandra, S. K. Inorg. Chem. 2005, 44, 2391. https://doi.org/10.1021/ic048542v
  10. Tandon, S. S.; Thompson, L. K.; Manuel, M. E.; Bridson, J. N. Inorg. Chem. 1994, 33, 5555. https://doi.org/10.1021/ic00102a033
  11. Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 4926. https://doi.org/10.1002/anie.200601467
  12. Aromi, G.; Parsons, S.; Wernsdorfer, W.; Brechin, E. K.; McInnes, E. J. L. Chem. Commun. 2005, 5038.
  13. Bell, A.; Aromi, G.; Teat, S. J.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Commun. 2005, 2808.
  14. Boudalis, A. K.; Donnadieu, B.; Nastopoulos, V.; Modesto Clemente-Juan, J.; Mari, A.; Sanakis, Y.; Tuchagues, J.-P.; Perlepes, S. P. Angew. Chem., Int. Ed. 2004, 43, 2266. https://doi.org/10.1002/anie.200353147
  15. Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 4766. https://doi.org/10.1021/ja0316824
  16. Abu-Youssef, M. A. M.; Escuer, A.; Goher, M. A. S.; Mautner, F. A.; Reiss, G. J.; Vicente, R. Angew. Chem., Int. Ed. 2000, 39, 1624. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1624::AID-ANIE1624>3.0.CO;2-7
  17. Arriortua, M. I.; Cortes, R.; Mesa, J. L.; Lezama, L.; Rojo, T.; Villeneuve, G. Transition Met. Chem. 1988, 13, 371. https://doi.org/10.1007/BF01225130
  18. Clemente-Juan, J. M.; Mackiewicz, C.; Verelst, M.; Dahan, F.; Bousseksou, A.; Sanakis, Y.; Tuchagues, J. P. Inorg. Chem. 2002, 41, 1478. https://doi.org/10.1021/ic010787+
  19. Talukder, P.; Datta, A.; Mitra, S.; Rosair, G.; El Fallah, M. S.; Ribas, J. Dalton Trans. 2004, 4161.
  20. Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. J. Mol. Struct. 2008, 890, 31. https://doi.org/10.1016/j.molstruc.2007.11.034
  21. Youngme, S.; Phatchimkun, J.; Suksangpanya, U.; Pakawatchai, C.; van Albada, G. A.; Reedijk, J. Inorg. Chem. Commun. 2005, 8, 882. https://doi.org/10.1016/j.inoche.2005.06.024
  22. Grove, H.; Julve, M.; Lloret, F.; Kruger, P. E.; Tornroos, K. W.; Sletten, J. Inorg. Chim. Acta 2001, 325, 115. https://doi.org/10.1016/S0020-1693(01)00642-9
  23. Escuer, A.; Font-Bardia, M.; Penalba, E.; Solans, X.; Vicente, R. Inorg. Chim. Acta 1999, 286, 189. https://doi.org/10.1016/S0020-1693(98)00410-1
  24. Diaz, C.; Ribas, J.; Salah El Fallah, M.; Solans, X.; Font-Bardia, M. Inorg. Chim. Acta 2001, 312, 1. https://doi.org/10.1016/S0020-1693(00)00281-4
  25. Chen, Z.-N.; Zhang, H.-X.; Yu, H.-B.; Zheng, K.-C.; Cai, H.; Kang, B.-S. J. Chem. Soc. Dalton Trans. 1998, 1133.
  26. Santoro, A.; Mighell, A. D.; Reimann, C. W. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem.1970, 26, 979. https://doi.org/10.1107/S056774087000345X
  27. Carreck, P. W.; Goldstein, M.; MacPartlin, E. M.; Unsworth, W. D. J. Chem. Soc. Chem. Commun. 1971, 1634.
  28. Darriet, J.; Haddad, M. S.; Duester, E. N.; Hendrickson, D. N. Inorg. Chem. 1979, 18, 2679. https://doi.org/10.1021/ic50200a008
  29. Real, J. A.; Munno, G. D.; Munoz, M. C.; Julve, M. Inorg. Chem. 1991, 30, 2701. https://doi.org/10.1021/ic00012a026
  30. Bordallo, H. N.; Chapon, L.; Manson, J. L.; Ling, C. D.; Qualls, J. S.; Hall, D.; Argyriou, D. Polyhedron 2003, 22, 2045. https://doi.org/10.1016/S0277-5387(03)00188-8
  31. Hay, P. J.; Thibeault, J. C.; Hoffman, R. J. Am. Chem. Soc. 1975, 97, 4884. https://doi.org/10.1021/ja00850a018
  32. Manson, J. L.; Huang, Q. Z.; Lynn, J. W.; Koo, H. J.; Whangbo, M. H.; Bateman, R.; Otsuka, T.; Wada, N.; Argyriou, D. N.; Miller, J. S. J. Am. Chem. Soc. 2001, 13, 162.
  33. Sun, H.-L.; Ma, B.-Q.; Gao, S.; Su, G. Chem. Commun. 2001, 24, 2586.
  34. Wriedt, M.; Nather, C. Z. Anorg. Allg. Chem. 2009, 635, 1115. https://doi.org/10.1002/zaac.200900069
  35. Dong, W.; Ouyang, Y.; Liao, D.-Z.; Yan, S.-P.; Cheng, P.; Jiang, Z.-H. Inorg. Chim. Acta 2006, 359, 3363. https://doi.org/10.1016/j.ica.2006.03.040
  36. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
  37. Ciofini, I.; Daul, C. A. Coord. Chem. Rev. 2003, 238-239, 187. https://doi.org/10.1016/S0010-8545(02)00330-2
  38. Noodleman, L. J. Chem. Phys. 1981, 74, 5737. https://doi.org/10.1063/1.440939
  39. Noodleman, L.; Davidson, E. R. Chem. Phys. 1986, 109, 131. https://doi.org/10.1016/0301-0104(86)80192-6
  40. Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem. 1999, 20, 1391. https://doi.org/10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J
  41. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  42. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  44. Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571. https://doi.org/10.1063/1.463096
  45. Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829. https://doi.org/10.1063/1.467146
  46. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. https://doi.org/10.1063/1.1674902
  47. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  48. Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. https://doi.org/10.1080/00268977400100171
  49. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. https://doi.org/10.1016/0009-2614(80)80628-2
  50. Hariharan, P. C.; Pople, J. A. J. Chem. Phys. 1973, 82, 213.
  51. Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016. https://doi.org/10.1063/1.474865
  52. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys. 1982, 77, 3654. https://doi.org/10.1063/1.444267
  53. Binning, R. C., Jr.; Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206. https://doi.org/10.1002/jcc.540111013
  54. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223. https://doi.org/10.1063/1.476673
  55. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976. https://doi.org/10.1002/jcc.1058
  56. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B. Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian Inc.: Wallingford, CT, 2003.
  57. Comba, P.; Martin, B. J. Phys. Chem. A 2009, 113, 6751. https://doi.org/10.1021/jp900752p
  58. Alvarez, S.; Julve, M.; Verdaguer, M. Inorg. Chem. 1990, 29, 4500. https://doi.org/10.1021/ic00347a033
  59. Choi, J.; Woodward, J. D.; Musfeldt, J. L.; Landee, C. P.; Turnbull, M. M. Chem. Mater. 2003, 15, 2797. https://doi.org/10.1021/cm030049e
  60. Bordallo, H. N.; Chapon, L.; Manson, J. L.; Ling, C. D.; Qualls, J. S.; Hall, D.; Argyriou, D. N. Polyhedron 2003, 22, 2045. https://doi.org/10.1016/S0277-5387(03)00188-8
  61. Jones, B. R.; Varughese, P. A.; Olejniczak, I.; Pigos, J. M.; Musfeldt, J. L.; Landee, C. P.; Turnbull, M. M.; Carr, G. L. Chem. Mater. 2001, 13, 2127. https://doi.org/10.1021/cm001412+
  62. Haynes, J. S.; Rettig, S. J.; Sams, J. R.; Thompson, R. C.; Trotter, J. Can. J. Chem. 1987, 65, 420. https://doi.org/10.1139/v87-071
  63. Suarez-Varela, J.; Colacio, E.; Romerosa, A.; Avila-Roson, J. C.; Hidalgo, M. A.; Romero, J. Inorg. Chim. Acta 1994, 217, 39. https://doi.org/10.1016/0020-1693(93)03742-S
  64. Grove, H.; Sletten, J.; Julve, M.; Lloret, F. J. Chem. Soc. Dalton Trans. 2000, 515.
  65. Okubo, T.; Kondo, M.; Kitawaga, S. Synth. Met. 1997, 85, 1661. https://doi.org/10.1016/S0379-6779(97)80386-4
  66. Graf, M.; Stoeckli-Evans, H.; Escuer, A.; Vicente, R. Inorg. Chim. Acta 1997, 257, 89. https://doi.org/10.1016/S0020-1693(96)05463-1
  67. Burkholder, E.; Golub, V.; O'Connor, C. J.; Zubieta, J. Inorg. Chem. 2003, 42, 6729. https://doi.org/10.1021/ic030169o
  68. Carranza, J.; Sletten, J.; Brennan, C.; Lloret, F.; Cano, J.; Julve, M. Dalton Trans. 2004, 3997.
  69. Cano, J.; Ruiz, E.; Alvarez, S.; Verdaguer, M. Comments Inorg. Chem. 1998, 20, 27. https://doi.org/10.1080/02603599808032749

Cited by

  1. Recent Developments in Low-Dimensional Copper(II) Molecular Magnets vol.2013, pp.13, 2013, https://doi.org/10.1002/ejic.201300133
  2. Synthesis, structure, magnetic properties and DFT calculations of novel bis-(5-tetrazolyl)amine copper(II) complexes vol.385, pp.None, 2012, https://doi.org/10.1016/j.ica.2011.12.040