DOI QR코드

DOI QR Code

An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of its Biological Activities

  • Kategaonkar, Amol H. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Sonar, Swapnil S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Pokalwar, Rajkumar U. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Kategaonkar, Atul H. (Pharmacology Laboratory, Maharashtra Institute of Pharmacy) ;
  • Shingate, Bapurao B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Received : 2010.02.20
  • Accepted : 2010.04.02
  • Published : 2010.06.20

Abstract

An efficient and novel one-pot synthesis of new 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives from 1-naphthol, various anilines and formalin at room temperature grinding is presented. The six-membered N,O-heterocyclic skeleton was constructed via zirconyl(IV) chloride promoted Mannich type reaction. In vitro antimicrobial activities of synthesized compounds have been investigated against Gram-positive Bacillus subtilis, Gram negative Escherichia coli and two fungi Candida albicans and Aspergillus niger in comparison with standard drugs. The results of preliminary bioassay indicate that some of title compounds possess significant antibacterial and antifungal activity.

Keywords

References

  1. Reichert, B. In Die Mannich Reaction; Springer-Verlag: Berlin, 1959.
  2. Blicke, F. F. In The Mannich Reaction: Org reactions; John Wiley: New York, 1942; Vol. 1, pp 303-341.
  3. Kuehne, M. E.; Konopke, E. A. J. Med. Chem. 1962, 5, 257. https://doi.org/10.1021/jm01237a005
  4. Chylinska, J. B.; Urbanski, T. J. Med. Chem. 1963, 6, 484. https://doi.org/10.1021/jm00341a004
  5. Hsu, L. Y.; Lin, C. H. Heterocycles 1996, 43, 2687. https://doi.org/10.3987/COM-96-7607
  6. Chylinska, J. B.; Janowiec, M.; Urbanski, T. Br. J. Pharmacol. 1971, 43, 649. https://doi.org/10.1111/j.1476-5381.1971.tb07194.x
  7. Latif, N.; Mishriky, N.; Massad, F. Aust. J. Chem. 1982, 35, 1037. https://doi.org/10.1071/CH9821037
  8. Pedersen, O. S.; Pedersen, E. B. Synthesis 2000, 479.
  9. Cocuzza, A. J.; Chidester, D. R.; Cordova, B. C.; Jeffrey, S.; Parsons, R. L.; Bacheler, L. T.; Erickson-Viitanen, S.; Trainor, G. L.; Ko, S. S. Bioorg. Med. Chem. Lett. 2001, 11, 1177. https://doi.org/10.1016/S0960-894X(01)00192-5
  10. Duffin, W. M.; Rollo, I. M. Br. J. Pharmacol. 1957, 12, 171.
  11. Singh, O. V.; Han, H. Tetrahedron Lett. 2007, 48, 2345. https://doi.org/10.1016/j.tetlet.2007.01.145
  12. Joyce, J. N.; Presgraves, S.; Renish, L.; Borwege, S.; Osredkar, D. H.; Replogle, M.; PazSoldan, M.; Millan, M. J. Exp. Neurol. 2003, 184, 393. https://doi.org/10.1016/S0014-4886(03)00353-4
  13. Kerdesky, F. A. J. Tetrahedron Lett. 2005, 46, 1711. https://doi.org/10.1016/j.tetlet.2005.01.048
  14. Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. https://doi.org/10.1021/cr800296p
  15. Bondock, S.; Fadaly, W.; Metwally, M. A. J. Sulfur Chem. 2009, 30, 74. https://doi.org/10.1080/17415990802588033
  16. Ganem, B. Acc. Chem. Res. 2009, 42, 463. https://doi.org/10.1021/ar800214s
  17. Domling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
  18. Wu, Y.; He, L. N.; Du, Y.; Wang, J. Q.; Miao, C. X.; Li, W. Tetrahedron 2009, 65, 6204. https://doi.org/10.1016/j.tet.2009.05.034
  19. Zhang, Z. H.; Li, T. S. Curr. Org. Chem. 2009, 13, 1. https://doi.org/10.2174/138527209787193783
  20. Das, B.; Krishnaiah, M.; Venkuleswarlu, K. Chem. Lett. 2007, 36, 82. https://doi.org/10.1246/cl.2007.82
  21. Das, B.; Ravikanth, B.; Reddy, K. R.; Rao, B. V. Helv. Chim. Acta 2007, 90, 105. https://doi.org/10.1002/hlca.200790001
  22. Sangshetti, J. N.; Kokare, N. D.; Shinde, D. B. Monatshefte fur Chemie. 2007, 138, 1289. https://doi.org/10.1007/s00706-007-0746-7
  23. Nagawade, R. R.; Shinde, D. B. Russ. J. Org. Chem. 2006, 42, 453. https://doi.org/10.1134/S1070428006030201
  24. Agag, T. J. App. Poly. Sci. 2006, 100, 3769. https://doi.org/10.1002/app.23502
  25. Burke, W. J.; Nurdock, K. C. J. Am. Chem. Soc. 1954, 76, 1677. https://doi.org/10.1021/ja01635a065
  26. Chernykh, A.; Agag, T.; Ishida, H. Macromolecules 2009, 42, 5121. https://doi.org/10.1021/ma900505d
  27. Bouaziz, Z; Riondel, J.; Mey, A.; Berlionz, M.; Villard, J.; Fillion, H. Eur. J. Med. Chem. 1991, 26, 469. https://doi.org/10.1016/0223-5234(91)90109-Z
  28. Mathew, B. P.; Nath, M. J. Het. Chem. 2009, 46, 1003. https://doi.org/10.1002/jhet.147
  29. Pokalwar, R. U.; Hangarge, R. V.; Maske, P. V.; Shingare, M. S. Arkivoc 2006, 11, 196.
  30. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2009 50, 1754. https://doi.org/10.1016/j.tetlet.2009.01.140
  31. Sonar, S. S.; Kategaonkar, A. H.; Gill, C. H.; Shingate, B. B.; Shingare, M. S. Arkivoc 2009, 2, 138.
  32. Sonar, S. S.; Sadaphal, S. A.; Kategaonkar, A. H.; Pokalwar, R. U.; Shingate, B. B. Shingare, M. S. Bull. Korean Chem. Soc. 2009, 30, 825. https://doi.org/10.5012/bkcs.2009.30.4.825
  33. Kategaonkar, A. H.; Pokalwar, R. U.; Sonar, S. S.; Gawali, V. U.; Shingate, B. B.; Shingare, M. S. Eur. J. Med. Chem. 2010, 45, 1128. https://doi.org/10.1016/j.ejmech.2009.12.013
  34. Kategaonkar, A. H.; Pokalwar, R. U.; Sadaphal, S. A.; Shinde, P. V.; Shingate, B. B.; Shingare, M. S. Heteroatom Chem. 2009, 20, 436.

Cited by

  1. Synthesis of trans-1,3-diaryl-2-(5-methylisoxazol-3-yl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines via bismuth(III)-catalyzed one-pot pseudo-four component reaction vol.16, pp.4, 2012, https://doi.org/10.1007/s11030-012-9408-8
  2. Arylglyoxals in Synthesis of Heterocyclic Compounds vol.113, pp.5, 2013, https://doi.org/10.1021/cr300176g
  3. Redox-Neutral α-Oxygenation of Amines: Reaction Development and Elucidation of the Mechanism vol.136, pp.16, 2014, https://doi.org/10.1021/ja501988b
  4. Design and Synthesis of Two Oxazine Derivatives Using Several Strategies vol.2014, pp.2090-9071, 2014, https://doi.org/10.1155/2014/757953
  5. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives vol.20, pp.3, 2016, https://doi.org/10.1007/s11030-016-9662-2
  6. ) salen-type Schiff base complexes using 1,3-oxazines obtained by Mannich condensation: towards removing ortho-hydroxyaldehydes vol.41, pp.18, 2017, https://doi.org/10.1039/C7NJ01562C
  7. Enzyme and photoredox sequential catalysis for the synthesis of 1,3-oxazine derivatives in one pot vol.7, pp.9, 2017, https://doi.org/10.1039/C6CY02682F
  8. One-pot solvent-free synthesis of 2,3-dihydro-2-substituted-1H-naphtho[1,2-e][1,3]oxazine derivatives using Fe3O4@nano-cellulose/TiCl as a bio-based and recyclable magnetic nano-catalyst pp.1573-501X, 2018, https://doi.org/10.1007/s11030-018-9884-6
  9. Medicinal chemistry of oxazines as promising agents in drug discovery vol.95, pp.1, 2010, https://doi.org/10.1111/cbdd.13633
  10. Nano-Fe3O4@walnut shell/Cu(II) as a highly effective environmentally friendly catalyst for the one-pot pseudo three-component synthesis of 1,3-oxazine derivatives vol.10, pp.53, 2010, https://doi.org/10.1039/d0ra04282j
  11. Gum arabic-OPO3H2 as a new natural-based green catalyst for the one-pot pseudo-four-component synthesis of naphtho[1,2-e][1,3]oxazines vol.10, pp.66, 2020, https://doi.org/10.1039/d0ra07199d
  12. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material vol.254, pp.None, 2010, https://doi.org/10.1016/j.carbpol.2020.117296
  13. Synthesis and Antibacterial Activity of Novel 1,3-Oxazine Derivatives vol.53, pp.6, 2010, https://doi.org/10.1080/00304948.2021.1975486