DOI QR코드

DOI QR Code

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul (Department of Chemistry, Kyungpook National University) ;
  • Khan, Nazmul Abedin (Department of Chemistry, Kyungpook National University) ;
  • Talapaneni, Siddulu Naidu (International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science) ;
  • Vinu, Ajayan (International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science) ;
  • JeGal, Jong-Geon (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung-Hwa (Department of Chemistry, Kyungpook National University)
  • Received : 2010.03.30
  • Accepted : 2010.05.03
  • Published : 2010.06.20

Abstract

Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Keywords

References

  1. Lin, S.-H.; Juang, R.-S. J. Environ. Manag. 2009, 90, 1336. https://doi.org/10.1016/j.jenvman.2008.09.003
  2. Srivastava, V. C.; Swamy, M. M.; Mall, I. D.; Prasad, B. ; Mishra, I. M. Colloid Surf. A 2006, 272, 89. https://doi.org/10.1016/j.colsurfa.2005.07.016
  3. Hameed, B. H.; Rahman, A. A. J. Hazard. Mater. 2008,160, 576. https://doi.org/10.1016/j.jhazmat.2008.03.028
  4. Yousef, R. I.; El-Eswed, B. Colloid Surf. A 2009, 334, 92 https://doi.org/10.1016/j.colsurfa.2008.10.004
  5. Kuleyin, A. J. Hazard. Mater. 2007, 144, 307. https://doi.org/10.1016/j.jhazmat.2006.10.036
  6. Khalid, M.; Joly, G.; Renaud, A.; Magnoux, P. Ind. Eng. Chem. Res. 2004, 43, 5275. https://doi.org/10.1021/ie0400447
  7. Girods, P.; Dufour, A.; Fierro, V.; Rogaume, Y.; Zoulalian, A.; Celzard, A. J. Hazard. Mater. 2009, 166, 491. https://doi.org/10.1016/j.jhazmat.2008.11.047
  8. Srihari, V.; Das, A. Ecotoxicology Environ. Safety 2008, 71, 274. https://doi.org/10.1016/j.ecoenv.2007.08.008
  9. Ahmaruzzaman, Md. Adv. Colloid Interf. Sci. 2008, 143, 48. https://doi.org/10.1016/j.cis.2008.07.002
  10. Mukherjee, S.; Kumar, S.; Misra, A. K.; Fan, M. Chem. Eng. J. 2007, 129, 133. https://doi.org/10.1016/j.cej.2006.10.030
  11. Caetano, M., Valderrama, C.; Farran, A.; Cortina, J. L. J. Colloid Interf. Sci. 2009, 338, 402. https://doi.org/10.1016/j.jcis.2009.06.062
  12. Huang, J.-H.; Huang, K.-L.; Wang, A.-T.; Yang, Q. J. Colloid Interf. Sci. 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006
  13. Xu, M.-C.; Zhou, Y.; Huang, J.-H. J. Colloid Interf. Sci. 2008, 327, 9. https://doi.org/10.1016/j.jcis.2008.07.054
  14. Nabais, J. M. V.; Gomes, J. A.; Suhas; Carrott, P. J. M.; Laginhas, C.; Roman, S. J. Hazard Mater. 2009, 167, 904. https://doi.org/10.1016/j.jhazmat.2009.01.075
  15. He, J.; Ma, K.; Jin, J.; Dong, Z.; Wang, J.; Li, R. Micropor. Mesopor. Mater. 2009, 121, 173. https://doi.org/10.1016/j.micromeso.2009.01.028
  16. Guo, Z.; Yuan, Y. Gaodeng Xuexiao Huaxue Xuebao 2007, 28, 289.
  17. Xu, H.-Y.; Prasad, M.; Wang, P. Bull. Kor. Chem. Soc. 2010, 31, 803. https://doi.org/10.5012/bkcs.2010.31.04.803
  18. Kim, J.; Kwak, B. S.; Kang, M. Bull. Kor. Chem. Soc. 2010, 31, 344. https://doi.org/10.5012/bkcs.2010.31.02.344
  19. Jung, M.-W.; Kim, K.-P.; Cho, B.-Y.; Paeng, I. R.; Lee, D. W.; Park, Y. K.; Paeng, K.-J. Bull. Kor. Chem. Soc. 2006, 27, 77. https://doi.org/10.5012/bkcs.2006.27.1.077
  20. Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712. https://doi.org/10.1021/ja002261e
  21. Hartmann, M.; Vinu, A. Langmuir 2002, 18, 8010. https://doi.org/10.1021/la025782j
  22. Vinu, A.; Hossian, K. Z., Srinivasu, P.; Miyahara, M. J. Mater. Chem. 2007, 17, 1819. https://doi.org/10.1039/b613899c
  23. Vinu, A.; Hossain, K. Z.; Kumar, G. S.; Ariga, K. Carbon 2006, 44, 530. https://doi.org/10.1016/j.carbon.2005.08.004
  24. Liu, G.; Zheng, S.; Yin, D.; Xu, Z.; Fan, J.; Jiang, F. J. Colloid Interf. Sci. 2006, 302, 47. https://doi.org/10.1016/j.jcis.2006.06.006
  25. Wang, H.; Lam, F. L. Y.; Hu, X.; Ng, K. M. Langmuir 2006, 22, 4583. https://doi.org/10.1021/la052615l
  26. Hartmann, M.; Vinu, A.; Chandrasekar, G. Chem. Mater. 2005, 17, 829. https://doi.org/10.1021/cm048564f
  27. Vinu, A.; Miyahara, M.; Ariga, K. J. Phys. Chem. B 2005, 109, 6436. https://doi.org/10.1021/jp050454o
  28. Vinu, A.; Streb, C.; Murugesan, V.; Hartmann, M. J. Phys. Chem. B 2003, 107, 8297. https://doi.org/10.1021/jp035246f
  29. Ho, Y. S.; McKay, G. Process Biochem. 1999, 34, 451. https://doi.org/10.1016/S0032-9592(98)00112-5
  30. Wang, S.; Li, H.; Xu, L. J. Colloid Interf. Sci. 2006, 295, 71. https://doi.org/10.1016/j.jcis.2005.08.006
  31. Din, A. T. M.; Hameed, B. H.; Ahmad, A. L. J. Hazard. Mater. 2009, 161, 1522. https://doi.org/10.1016/j.jhazmat.2008.05.009
  32. Webster, C. E.; Drago, R. S.; Zerner, M. C. J. Am. Chem. Soc. 1998, 120, 5509 https://doi.org/10.1021/ja973906m
  33. Fierro, V.; Torne-Fernandez, V.; Montane, D.; Celzard, A. Micropor. Mesopor. Mater. 2008 , 111, 276. https://doi.org/10.1016/j.micromeso.2007.08.002

Cited by

  1. Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges vol.94, pp.10, 2012, https://doi.org/10.1080/02772248.2012.744023
  2. Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3 vol.295, pp.1, 2013, https://doi.org/10.1007/s10967-012-1820-0
  3. Removal of thorium from aqueous solution by ordered mesoporous carbon CMK-3 vol.302, pp.1, 2014, https://doi.org/10.1007/s10967-014-3304-x
  4. Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon vol.306, pp.2, 2015, https://doi.org/10.1007/s10967-015-4133-2
  5. Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study vol.24, pp.1, 2017, https://doi.org/10.1007/s10934-016-0249-1
  6. Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution pp.1574-1451, 2017, https://doi.org/10.1007/s10904-017-0709-3
  7. Porous carbon screening for benzene sorption pp.19447442, 2019, https://doi.org/10.1002/ep.12925
  8. Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs vol.8, pp.4, 2018, https://doi.org/10.3390/nano8040248
  9. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates vol.181, pp.1, 2010, https://doi.org/10.1016/j.jhazmat.2010.05.047
  10. Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol vol.20, pp.48, 2010, https://doi.org/10.1039/c0jm02974b
  11. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235) vol.185, pp.1, 2010, https://doi.org/10.1016/j.jhazmat.2010.09.035
  12. Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide vol.9, pp.2, 2010, https://doi.org/10.1007/s13762-012-0038-6
  13. New mesoporous silica/carbon composites by in situ transformation of silica template in carbon/silica nanocomposite vol.9, pp.3, 2010, https://doi.org/10.1080/17458080.2011.654275
  14. Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater vol.72, pp.9, 2010, https://doi.org/10.2166/wst.2015.372
  15. Comparative study of carbon black and activated carbon adsorbents for removal of carbofuran from aqueous solution vol.57, pp.45, 2010, https://doi.org/10.1080/19443994.2015.1124053
  16. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol vol.28, pp.1, 2010, https://doi.org/10.1080/09542299.2015.1136570
  17. Facile and one-pot synthesis of magnetic nanoparticles containing mesoporous carbon vol.685, pp.1, 2010, https://doi.org/10.1080/15421406.2019.1645461
  18. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater vol.26, pp.21, 2010, https://doi.org/10.3390/molecules26216628