DOI QR코드

DOI QR Code

Physicochemical Properties of Protoporphyrin IX by Metal Ions in Acetonitrile-Water Mixture Solution

  • Bark, Ki-Min (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Yang, Jeong-Im (Department of Chemistry, Chonnam National University) ;
  • Lee, Ho-Suk (Department of Chemistry, Chonnam National University) ;
  • Lee, Jee-Bum (Department of Dermatology, Chonnam National University Medical School) ;
  • Park, Chul-Ho (Department of Cosmetic Science, Nambu University) ;
  • Park, Hyoung-Ryun (Department of Chemistry, Chonnam National University)
  • Received : 2010.03.15
  • Accepted : 2010.04.23
  • Published : 2010.06.20

Abstract

The UV-vis absorption spectrum of protoporphyrin IX shows a very sharp and strong absorption maximum peak at 398 nm in acetonitrile-water mixture solution (1:1 v/v). When divalent metal ions such as $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ion were added to protoporphyrin IX, metal protoporphyrin IX complexes were thereby produced. Cu-protoporphyrin IX complexes have the largest formation constant ($K_f$) among them. The fluorescence intensity of protoporphyrin IX was diminished by the presence of $Cu^{2+}$, $Zn^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions as quenchers. However, $Mg^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions are hardly combined with protoporphyrin IX. $Mg^{2+}$ ion does not take part in the fluorescence quenching process of protoporphyrin IX in acetonitrile-water mixture solution. According to the Stern-Volmer plots, fluorescence quenching by $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ions involves static quenching, which is due to complex formation. On the contrary, dynamic quenching has a large influence on the overall quenching process, when $Mn^{2+}$ and $Ni^{2+}$ ions were added to protoporphyrin IX in acetonitrile-water mixture solution.

Keywords

References

  1. Otake, M.; Nishiwaki, M.; Kobayashi, Y.; Baba, S.; Kohno, E.;Kawasaki, T.; Fujise, Y.; Nakamura, H. British. J. Cancer 2003,89, 730. https://doi.org/10.1038/sj.bjc.6601135
  2. Lee, J. B.; Choi, J. Y.; Chun, J. S.; Yun, S. J.; Lee, S. C.; Oh, J.;Park, H. R. British . J. Cancer 2008, 159, 61.
  3. Berlin, N. I.; Neuberger, A.; Scott, J. J. Biochemistry 1956, 64, 80.
  4. Kloeck, J.; Akkermans, W.; Beijersbergen van Henegouwen, G. M.J. Photochem. Photobiol. 1998, 67, 150. https://doi.org/10.1111/j.1751-1097.1998.tb05178.x
  5. Kenedy, J.; Pottier, R.; Pross, G. Photochem. Photobiol. B 1990, 6,143. https://doi.org/10.1016/1011-1344(90)85083-9
  6. Zensen, V.; Zankl, H. Cancer Letters 2003, 202, 35. https://doi.org/10.1016/j.canlet.2003.07.001
  7. Georgakoudi, I.; Forster, T. H. Photochem. Photobiol. 1998, 67,612. https://doi.org/10.1111/j.1751-1097.1998.tb09102.x
  8. Gross, G. Intervirology 1997, 40, 368. https://doi.org/10.1159/000150569
  9. Beutner, K. R.; Ferenczy, A. Am. J. Med. 1997, 102, 28.
  10. North, J.; Neyndorff, H.; King, D.; Levy, J. G. Blood Cells 1992,18, 129.
  11. Falchuk, K. H. Mol. Cell Biochem. 1998, 188, 41. https://doi.org/10.1023/A:1006808119862
  12. AjaA.; Carol, P.; Sreejith, S. J. Amer. Chem. Soc. 2005, 127, 14962. https://doi.org/10.1021/ja054149s
  13. Park, H. R.; Seo, J. J.; Shin, S. C.; Lee, H. S.; Bark, K. M. Bull. Kor. Chem. Soc. 2007, 28, 1573. https://doi.org/10.5012/bkcs.2007.28.9.1573
  14. Park, H. R.; Oh, C. H.; Lee, H. C.; Jung, B. I.; Bark, K. M. Bull. Kor. Chem. Soc. 2006, 27, 2002. https://doi.org/10.5012/bkcs.2006.27.12.2002
  15. Lee. H. S.; Lee, J. B.; Yun, S. J.; Choi, J. Y.; Oh, J.; Park, H. R. Bull. Kor. Chem. Soc. 2006, 27, 1067. https://doi.org/10.5012/bkcs.2006.27.7.1067
  16. Park, H. R.; Oh, C. H.; Lee, H. C.; Lim S. R.; Yang, K. Y.; Bark, K.M. Photochem. Photobiol. 2004, 80, 143.
  17. Park, H. R.; Oh, C. H.; Lee, H. C.; Lee, J. K.; Yang, K.; Bark, K. M.Photochem. Photobiol. 2002, 75, 237. https://doi.org/10.1562/0031-8655(2002)075<0237:SPOFAI>2.0.CO;2
  18. Sanz-Nebot, V.; Valls, I.; Barbero, D.; Barbosa, J. Acta Chem. Scand. 1997, 51, 896. https://doi.org/10.3891/acta.chem.scand.51-0896
  19. Barbosa, J.; Berges, R.; Toro, I.; Sanz-Nebot, V. Int. J. Pharm. 1997, 149, 213. https://doi.org/10.1016/S0378-5173(97)04871-0
  20. Sanchez, J. C.; Leyva, J. A.; Ceba, M. R. Analytica Chimica Acta1977, 90, 223. https://doi.org/10.1016/S0003-2670(01)82314-X
  21. Basolo, F.; Johnson, R. C. Coordination Chemistry; Science Review: London, UK, 1986; p 47.
  22. Goodpaster, J. V.; McGuffin, V. L. Anal. Chem. 2000, 72, 1072. https://doi.org/10.1021/ac991106j
  23. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, USA, 1983; p 257.
  24. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins College Publishers: New York, USA, 1993; p 130.

Cited by

  1. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.25093
  2. Hyperspectral Determination of Fluorescence Wavebands for Multispectral Imaging Detection of Multiple Animal Fecal Species Contaminations on Romaine Lettuce vol.11, pp.4, 2018, https://doi.org/10.1007/s11947-017-2032-y