DOI QR코드

DOI QR Code

Catalytic Activity of Supported Rhodium(I) Complex for the Carbonylation of Nitrobenzene: Mechanism for Carbamate Formation

  • Kim, Jin-Hyung (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Dae-Won (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Mukherjee, Deb Kumar (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University)
  • Received : 2010.03.10
  • Accepted : 2010.04.12
  • Published : 2010.06.20

Abstract

The investigation of the catalytic activity of supported rhodium(I) complex [Rh(P-S)$(CO)_2$] (P-S; polymer anchored salicylic acid) toward the reductive carbonylation of nitrobenzene in DMF medium has been reported. Use of basic cocatalysts in the reaction medium enhanced the percentage of more useful phenyl carbamates. Spectroscopic studies indicate that the reaction proceeds through a dimer species [Rh(HS)(CO)(C(O)$OCH_3$)(${\mu}-OCH_3)]_2$ and phenyl isocyanate is formed as an intermediate. A plausible reaction mechanism based on the identification of reactive intermediates from the soluble rhodium variety has been proposed for the carbonylation process.

Keywords

References

  1. Cenini, S.; Ragaini, F. Catalytic Reductive Carbonylation of Organic Nitro Compounds; Kluwer Academic publishers: Dordrecht, The Netherlands, 1996.
  2. Ragaini, F. Dalton Trans. 2009, 6251.
  3. Muzart, J. Tetrahedron 2005, 61(40), 9423. https://doi.org/10.1016/j.tet.2005.06.103
  4. Ragaini, F.; Cenini, S. J. Mol. Catal. 1996, 109, 1. https://doi.org/10.1016/1381-1169(96)00004-0
  5. Lee, Ch. W.; Cho, N. S.; Kim, K. D.; Oh, J. S.; Lee, S. M.; Lee, J. S J. Mol. Catal. 1993, 81, 17. https://doi.org/10.1016/0304-5102(93)80019-Q
  6. Mukherjee, D. K.; Palit, B. K.; Saha, C. R. J. Mol. Catal. 1994, 91,19. https://doi.org/10.1016/0304-5102(94)00024-7
  7. Gaonkar, S. R.; Sapre, N. Y.; Bhaduri, S.; Kumar, G. S. Macromolecules1990, 23(14), 3533. https://doi.org/10.1021/ma00216a024
  8. Mukherjee, D. K.; Saha, C. R. J. Catal. 2002, 210, 255. https://doi.org/10.1006/jcat.2002.3665
  9. Tafesh, A. M.; Weiguny, J. Chem. Review 1996, 96, 2035. https://doi.org/10.1021/cr950083f
  10. Skupinska, J.; Karpinska, M.; Olowek, M. Appl. Catal. A: Gen.2004, 267, 59. https://doi.org/10.1016/j.apcata.2004.02.033
  11. Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2003, 68, 219.
  12. Kanagasabapathy, S.; Thangaraj, A.; Gupte, S. P.; Chaudhuri, R. V.catalyst Lett. 1994, 25, 361. https://doi.org/10.1007/BF00816315
  13. Stahl, S. Angew. Chem. Int. Ed. 2004, 43, 3400. https://doi.org/10.1002/anie.200300630
  14. Lee, S. M.; Cho, N. S.; Kim, K. D.; Oh, J. S.; Lee, C. W.; Lee, J. S.J. Mol. Catal. 1992, 73, 43. https://doi.org/10.1016/0304-5102(92)80060-T
  15. Sherlock, S. J.; Boyd, D. C.; Moasser B.; Gladfelter, W. L. Inorg. Chem. 1991, 30, 3626. https://doi.org/10.1021/ic00019a011
  16. Kunin, A. J.; Noirot, M. D.; Gladfelter, W. L. J. Am. Chem. Soc.1989, 111, 2739. https://doi.org/10.1021/ja00189a071
  17. Islam, S. M.; Mal, D.; Palit, B. K.; Saha, C. R. J. Mol. Catal. A: Chemical 1999, 142, 169. https://doi.org/10.1016/S1381-1169(98)00295-7
  18. Basu, A.; Bhaduri, S.; Khwaja, H.; Sharma, R. K. Proceedings of the Indian National Science Academy, Part-A: Physical Sciences1986, 52, 831.
  19. Jayashree, S.; Seayad, A,; Gupte, S. P.; Chaudhari, R. V. Catal. Lett. 1999, 58, 213. https://doi.org/10.1023/A:1019002606353
  20. Macho, V.; Kralic, M.; Halmo, F. J. Mol. Catal. A: Chem. 1996,109, 119. https://doi.org/10.1016/1381-1169(96)00006-4
  21. Orejon, A.; Masdeu-Bulto, A. M.; Salagre, P.; Castillon, S.; Claver, C.; Padilla, A.; Almena, B.; Seranno, F. L. Ind. and Eng. Chem. Res. 2008, 47, 8032. https://doi.org/10.1021/ie8002599
  22. Gargulak, J. D.; Hoffmann, R. D.; Gladfelter, W. L. J. Mol. Catal.1991, 68, 289. https://doi.org/10.1016/0304-5102(91)80087-J
  23. Riddick, J. A.; Bunger, W. B. Physical Properties and Methods of Purification-Organic Solvents; Vol. 2, 1986; Weissberger.
  24. Mukherjee, D. K.; Saha, C. R. J. Mol. Catal. A: Chemical 2003,193, 4.
  25. Kwaskowska-chec, E.; Ziolkowski, J. J. Trans. Met. Chem. 1983,8, 103. https://doi.org/10.1007/BF01036090
  26. Gargulak, J. D.; Noirot, M. D.; Gladfelter, W. L. J. Am. Chem. Soc.1991, 113, 1054. https://doi.org/10.1021/ja00003a056
  27. Pepper, K. W.; Paisley, H. M.; Young, M. A. J. Chem. Soc. 1953,4097. https://doi.org/10.1039/jr9530004097
  28. Holy, N. L.; Shalvoy, R. J. Org. Chem. 1980, 45, 1418. https://doi.org/10.1021/jo01296a015
  29. Rode, C. V.; Gupte, S. P.; Chaudhuri, R. V.; Pirozhkov, C. D.; Lapidus,A. L. J. Mol. Catal. 1994, 91, 195. https://doi.org/10.1016/0304-5102(94)00035-2
  30. Gargulak, J. D.; Berry, A. J.; Noirot, M. D.; Gladfelter, W. L. J. Am. Chem. Soc. 1992, 114, 8933. https://doi.org/10.1021/ja00049a026
  31. Trzeciak, A. M.; Ciunik, Z.; Ziolkowski, J. J. Organometallics2002, 21, 132. https://doi.org/10.1021/om010541c
  32. Gargulak, J. D.; Gladfelter, W. L. J. Am. Chem. Soc. 1994, 116,3792. https://doi.org/10.1021/ja00088a015
  33. Johnson, K. A.; Gladfelter, W. L. Organometallics 1990, 9, 2101. https://doi.org/10.1021/om00157a020
  34. Holy, N. L. J. Org. Chem. 1979, 44, 239. https://doi.org/10.1021/jo01316a018
  35. Thonde, S. S.; Kelkar, A. A.; Bhadbhade, M. M.; Chaudhari, R.V. J. Organomet. Chem. 2005, 690, 1677. https://doi.org/10.1016/j.jorganchem.2005.01.010
  36. Albano, V. G.; Natile, G.; Panunzi, A. Coord. Chem. Rev. 1994,133, 67. https://doi.org/10.1016/0010-8545(94)80057-X
  37. Giannoccaro, P.; Tommasi, I.; Aresta, M. J. Organomet. Chem.1994, 476, 13. https://doi.org/10.1016/0022-328X(94)84134-9
  38. Viege, A. S. Polyhedron 2008, 27, 3177. https://doi.org/10.1016/j.poly.2008.07.019
  39. Ozawa, F.; Kawasaki, N.; Okamoto, H.; Yamamoto, T.; Yamamoto,A. Organometallics 1987, 6, 1640. https://doi.org/10.1021/om00151a008
  40. Yamamoto, A.; Ozawa, F.; Osakada, K.; Huang, L.; Son, T. I.;Kawasaki, N.; Doh, M. K. Pure Appl. Chem. 1991, 63, 687. https://doi.org/10.1351/pac199163050687

Cited by

  1. Sustainable routes to polyurethane precursors vol.15, pp.6, 2013, https://doi.org/10.1039/c3gc40440d
  2. Chloromethylated polystyrene immobilized ruthenium complex of 2-(2-pyridyl)benzimidazole catalyst for the synthesis of bioactive disubstituted ureas by carbonylation reaction vol.42, pp.11, 2018, https://doi.org/10.1039/C8NJ00475G
  3. Spectroscopic monitoring of carbonylation reactions on zeolite supported rhodium(I) carbonyls vol.451, pp.None, 2016, https://doi.org/10.1016/j.ica.2016.07.036
  4. An Escape from Noble Metals for Generating Urethanes via Reductive Carbonylation of Nitroarenes over FeSe2/γ-Al2O3 † vol.10, pp.11, 2010, https://doi.org/10.3390/catal10111228