DOI QR코드

DOI QR Code

Development of a Fluoride-Selective Electrode based on Scandium(III) Octaethylporphyrin in a Plasticized Polymeric Membrane

  • 투고 : 2010.04.03
  • 심사 : 2010.04.20
  • 발행 : 2010.06.20

초록

A scandium(III) porphyrin-based fluoride-selective potentiometric sensor and its application in the analysis of hydrofluoric acid is described. Scandium(III) octaethylporphyrin, an ionophore recently developed for the optical fluoride sensor, was employed as a host molecule for the selective binding with fluoride in the plasticized PVC membrane. Nernstian response for $F^-$ between $10^{-4.6}$ to $10^{-1}$ M was observed at a glycine-phosphate buffer (pH 3.0). The selectivity pattern was observed as $F^-$, salicylate $\gg$ $SCN^-$ > $Cl^-$, $Br^-$, $NO_3{^-}$, $ClO_4{^-}$, which is consistent with the binding constant data measured in the plasticized PVC membrane based on a sandwich membrane method. This highly selective and reversible fluoride-sensitive electrode was employed for the analysis of hydrofluoric acid (HF). A disposable differential-type HF sensor was fabricated on the screen-printed electrode and demonstrated its ability to detect the neutral HF in the acidic solution.

키워드

참고문헌

  1. Harrison, P. T. C. J. Fluorine Chem. 2005, 126, 1448. https://doi.org/10.1016/j.jfluchem.2005.09.009
  2. Ayoob, S.; Gupta, A. K. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433. https://doi.org/10.1080/10643380600678112
  3. Simonian, A. L.; Grimsley, J. K.; Flounders, A. W.; Schoeniger, J. S.; Cheng, T. C.; Defrank, J. J.; Wild, J. R. Anal. Chim. Acta 2001, 442, 15. https://doi.org/10.1016/S0003-2670(01)01131-X
  4. Viveros, L.; Paliwal, S.; Mccrae, D.; Wild, J.; Simonian, A. Sens. Actuators B 2006, 115, 150. https://doi.org/10.1016/j.snb.2005.08.032
  5. Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A 2004, 108, 2020. https://doi.org/10.1021/jp0311512
  6. Steinle, E. D.; Schaller, U.; Meyerhoff, M. E. Anal. Sci. 1998, 14, 79. https://doi.org/10.2116/analsci.14.79
  7. Malinowska, E.; Gorski, L.; Meyerhoff, M. E. Anal. Chim. Acta 2002, 468, 133. https://doi.org/10.1016/S0003-2670(02)00635-9
  8. Gorski, L.; Meyerhoff, M. E.; Malinowska, E. Talanta 2004, 63, 101. https://doi.org/10.1016/j.talanta.2003.11.022
  9. Mitchell-Koch, J. T.; Malinowska, E.; Meyerhoff, M. E. Electroanalysis 2005, 17, 1347. https://doi.org/10.1002/elan.200503284
  10. Gorski, L.; Saniewska, A.; Parzuchowski, P.; Meyerhoff, M. E.; Malinowska, E. Anal. Chim. Acta 2005, 551, 37. https://doi.org/10.1016/j.aca.2005.07.001
  11. Badr, I. H. A.; Meyerhoff, M. E. J. Am. Chem. Soc. 2005, 127, 5318. https://doi.org/10.1021/ja0500153
  12. Badr, I. H. A.; Meyerhoff, M. E. Anal. Chim. Acta 2005, 553, 169. https://doi.org/10.1016/j.aca.2005.08.037
  13. Badr, I. H. A.; Meyerhoff, M. E. Anal. Chem. 2005, 77, 6719. https://doi.org/10.1021/ac050987t
  14. Mitchell-Koch, J.T.; Pietrzak, M.; Malinowska, E.; Meyerhoff, M. E. Electroanalysis 2006, 18, 551. https://doi.org/10.1002/elan.200503450
  15. Wang, L.; Meyerhoff, M. E. Anal. Chim. Acta 2008, 611, 97. https://doi.org/10.1016/j.aca.2008.01.070
  16. Kang, Y.; Kampf, J.W.; Meyerhoff, M. E. Anal. Chim. Acta 2007, 598, 295. https://doi.org/10.1016/j.aca.2007.07.048
  17. Gouterman, M.; Holten, D.; Lieberman, E. Chem. Phys. 1977, 25, 139. https://doi.org/10.1016/0301-0104(77)87070-5
  18. Arnold, J.; Hoffman, C.G.; Dawson, D.Y.; Hollander, F. J. Organometallics 1993, 12, 3645. https://doi.org/10.1021/om00033a042
  19. Meier, P. Anal. Chim. Acta 1982, 136, 363. https://doi.org/10.1016/S0003-2670(01)95397-8
  20. Bakker, E.; Bühlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083. https://doi.org/10.1021/cr940394a
  21. Steinle, E. D.; Amemiya, S.; Buhlmann, P.; Meyerhoff, M. E. Anal. Chem. 2000, 72, 5766. https://doi.org/10.1021/ac000643x
  22. Eugster, R.; Rosatzin, T.; Rusterholz, B.; Aebersold, B.; Pedrazza, U.; Ruegg, D.; Schmid, A.; Spichiger, U. E.; Simon, W. Anal. Chim. Acta 1994, 289, 1. https://doi.org/10.1016/0003-2670(94)80001-4
  23. Sears, J. K.; Darby, J. R. The Technology of Plasticizers; John Wiley & Sons, Inc.: New York, 1982; p 989.
  24. Mi, Y. M.; Bakker, E. Electrochem. Solid-State Lett. 2000, 3, 159. https://doi.org/10.1149/1.1390988
  25. Qin, Y.; Bakker, E. Talanta 2002, 58, 909. https://doi.org/10.1016/S0039-9140(02)00405-8
  26. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247. https://doi.org/10.1007/BF01918191
  27. Tranthi, T. H.; Lipskier, J. F.; Maillard, P.; Momenteau, M.; Lopezcastillo, J. M.; Jaygerin, J. P. J. Phys. Chem. 1992, 96, 1073. https://doi.org/10.1021/j100182a012
  28. http://www.i-sens.com/product/smbg.htm

피인용 문헌

  1. Electrochemical Sensors and Biosensors vol.84, pp.2, 2012, https://doi.org/10.1021/ac202878q
  2. Efficient separation of nitrite from aqueous solutions by grafting metalloporphyrin on Fe3O4 nanoparticles vol.10, pp.1, 2013, https://doi.org/10.1007/s13738-012-0123-2
  3. Viologen substituted anthrone derivatives for selective detection of cyanide ions using voltammetry vol.5, pp.20, 2013, https://doi.org/10.1039/c3ay40912k
  4. An efficient colorimetric and fluorescent probe for the detection of fluoride ions based on a benzothiadiazole derivative vol.7, pp.22, 2015, https://doi.org/10.1039/C5AY02108A
  5. Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: a review vol.8, pp.27, 2016, https://doi.org/10.1039/C6AY01534D
  6. Determining fluoride ions in ammonium desulfurization slurry using an ion selective electrode method vol.121, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/121/2/022033
  7. Magnetic removal of nitrate ions from aqueous solution using amino-silica coated magnetic nanoparticles modified by oxovanadium(IV) porphyrin vol.17, pp.5, 2010, https://doi.org/10.1142/s108842461350048x
  8. Recent advances in ion sensing with conducting polymers vol.1, pp.1, 2010, https://doi.org/10.1186/s42833-019-0001-7
  9. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review vol.807, pp.p1, 2010, https://doi.org/10.1016/j.scitotenv.2021.150601