References
- Berlan, J.; Trabelsi, F.; Delmas, H.; Wilhelm, A. M.; Petrignani,J. F. Ultrason. Sonochem. 1994, 1, 97. https://doi.org/10.1016/1350-4177(94)90005-1
- Gogate, P. R. Adv. Environ. Res. 2002, 6, 335. https://doi.org/10.1016/S1093-0191(01)00067-3
- Suslick, K. S. Scientific American 1989, 260, 80.
- Makino, K.; Mossoba, M. M.; Riesz, P. J. Phys. Chem. 1983, 87,1369. https://doi.org/10.1021/j100231a020
- Serpone, N.; Colarusso, P. Res. Chem. Intermed. 1994, 20, 635. https://doi.org/10.1163/156856794X00261
- Riesz, P.; Berdahl, D.; Christman, C. L. Environ. Health Perspect.1985, 64, 233. https://doi.org/10.2307/3430013
- Silva, C. G.; Faria, J. L. J. Photochem. Photobiol. A 2003, 155,133. https://doi.org/10.1016/S1010-6030(02)00374-X
- Han, W.; Zhu, W.; Zhang, P.; Zhang, Y.; Li, L. Catal. Today 2004,90, 319. https://doi.org/10.1016/j.cattod.2004.04.041
- Han, W.; Zhang, P.; Zhu, W.; Yin, J.; Li, L. Water. Res. 2004, 38,4197. https://doi.org/10.1016/j.watres.2004.07.019
- He, D. M.; Yang, L. X.; Kuang, S. Y.; Cai, Q. Y. Electrochem. Communications2007, 9, 2467. https://doi.org/10.1016/j.elecom.2007.07.025
- Zhang, X. W.; Zhou, M. H.; Lei, L. C. Mater. Chem. Phys. 2005,91, 73. https://doi.org/10.1016/j.matchemphys.2004.10.058
- Feng, J.; Wong, R. S. K.; Hu, X.; Yue, P. L. Catal. Today 2004, 98,441. https://doi.org/10.1016/j.cattod.2004.08.007
- Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B: Environ.2005, 56, 305. https://doi.org/10.1016/j.apcatb.2004.09.018
- Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura,M. Appl. Catal. A: General 2004, 265, 115. https://doi.org/10.1016/j.apcata.2004.01.007
- Tryba, B. J. Hazard. Mater. 2008, 151, 623. https://doi.org/10.1016/j.jhazmat.2007.06.034
- Yang, X.; Cao, C.; Hohn, K.; Erickson, L.; Maghirang, R.; Klabunde,K. J. Catal. 2007, 252, 296. https://doi.org/10.1016/j.jcat.2007.09.014
- Teoh, W. Y.; Amal, R.; Mädler, L.; Pratsinis, S. E. Catal. Today2007, 120, 203. https://doi.org/10.1016/j.cattod.2006.07.049
- Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Mole. Catal. A: Chem. 2005, 235, 194. https://doi.org/10.1016/j.molcata.2005.02.027
- Tuziuti, T.; Yasui, K.; Iida, Y.; Taoda, H.; Koda, S. Ultrason. 2004,42, 597. https://doi.org/10.1016/j.ultras.2004.01.082
- Wang, J.; Lv, Y. H.; Zhang, Z. H.; Deng, Y. Q.; Zhang, L. Q.; Liu,B.; Xu, R.; Zhang, X. D. J. Haz. Mater. 2009, 170, b398. https://doi.org/10.1016/j.jhazmat.2009.04.083
- Wang, J.; Sun, W.; Zhang, Z. H.; Jiang, Z.; Wang, X. F.; Xu, R.; Li,R. H.; Zhang, X. D. J. Col. Inter. Sci. 2008, 320, 202. https://doi.org/10.1016/j.jcis.2007.12.013
- Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos,D. Appl. Catal. B: Environ. 2007, 74, 63. https://doi.org/10.1016/j.apcatb.2007.01.013
- Yano, J.; Matsuura, J.; Ohura, H.; Yamasaki, S. Ultrason. Sonochem.2005, 12, 197. https://doi.org/10.1016/j.ultsonch.2003.12.001
- Oh, W. C.; Zhang, F. J.; Chen, M. L.; Lee, Y. M.; Ko, W. B. J. Ind. Eng. Chem. 2009, 15, 190. https://doi.org/10.1021/ie50158a034
- Zhang, K.; Oh, W. C. J. Kor. Cer. Soc. 2009, 46, 561. https://doi.org/10.4191/KCERS.2009.46.6.561
- Oh, W. C.; Chen, M. L. Bull. Kor. Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
- Wang, J.; Ma, T.; Zhang, Z. H.; Zhang, X. D.; Jiang, Y. F.; Pan, Z.J.; Wen, F. Y.; Kang, P. L.; Zhang, P. Desalination 2006, 195, 294. https://doi.org/10.1016/j.desal.2005.12.007
- Hung, W. C.; Chen, Y. C.; Chu, H.; Tseng, T. K. Appl. Sur. Sci.2008, 255, 2205. https://doi.org/10.1016/j.apsusc.2008.07.079
- Chen, L. C.; Ho, Y. C.; Guo, W. S.; Huang, C. M.; Pan, T. C.; Electrochimica. Acta 2009, 54, 3884. https://doi.org/10.1016/j.electacta.2009.02.001
- Zhang, K.; Meng, Z. D.; Ko, W. B.; Oh, W. C. Anal. Sci. Technol.2009, 22, 254.
- Wu, K. Q.; Xie, Y. D.; Zhao, J. C.; Hidaka, H. S. J. Mol. Catal. A1999, 144, 77. https://doi.org/10.1016/S1381-1169(98)00354-9
- Rincon, A. G.; Pulgarin, C. Appl. Catal. B 2006, 63, 222. https://doi.org/10.1016/j.apcatb.2005.10.009
- Zhang, K.; Oh, W. C. Kor. J. Mater. Res. 2009, 19, 481. https://doi.org/10.3740/MRSK.2009.19.9.481
- Tryba, B.; Morawski, A. W.; Inagaki, M.; Toyoda, M. Chemosphere2006, 64, 1225. https://doi.org/10.1016/j.chemosphere.2005.11.035
- Mrowetz, M.; Pirola, C.; Selli, E. Ultrason. Sonochem. 2003, 10,247. https://doi.org/10.1016/S1350-4177(03)00090-7
- Shimizu, N.; Ogino, C.; Dadjour, M. F.; Murata, T. Ultrason. Sonochem.2007, 14, 184. https://doi.org/10.1016/j.ultsonch.2006.04.002
- Tu, Y. F.; Huang, S. Y.; Sang, J. P.; Zou, X. W. Mater. Res. Bull.2010, 45, 224. https://doi.org/10.1016/j.materresbull.2009.08.020
Cited by
- Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water vol.14, pp.4, 2012, https://doi.org/10.1007/s11051-012-0776-x
- Reusable Photocatalysts for Dye Degradation vol.2013, pp.1687-529X, 2013, https://doi.org/10.1155/2013/752605
- A facile in situ fabrication and visible-light-response photocatalytic properties of porous carbon sphere/InOOH nanocomposites vol.16, pp.3, 2014, https://doi.org/10.1007/s11051-014-2295-4
- Hybrid Nanomaterials Synthesized with a Microwave-assisted Method vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.162
- Highly Efficient Photodegradation of Organic Pollutants Assisted by Sonoluminescence vol.91, pp.1, 2015, https://doi.org/10.1111/php.12352
- (B)/CNT Nanocomposites for Sonophotocatalytic and Photocatalytic Degradation of Malachite Green (MG) under Visible Light: Kinetic Study vol.121, pp.30, 2017, https://doi.org/10.1021/acs.jpca.7b02580
- -based Photocatalysis: Toward Visible Light-Responsive Photocatalysts Through Doping and Fabrication of Carbon-Based Nanocomposites vol.42, pp.4, 2017, https://doi.org/10.1080/10408436.2016.1211507
- Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity vol.18, pp.3, 2010, https://doi.org/10.1016/j.ultsonch.2010.10.008
- Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts vol.21, pp.2, 2014, https://doi.org/10.1016/j.ultsonch.2013.08.014
- Low frequency ultrasound (42kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts vol.21, pp.5, 2014, https://doi.org/10.1016/j.ultsonch.2014.03.004
- Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17 vol.22, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2014.05.023
- Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process vol.23, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2014.08.023
- Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/3746861
- Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase vol.28, pp.None, 2016, https://doi.org/10.1016/j.ultsonch.2015.07.002
- Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate vol.38, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2017.03.044
- Improvements in Catalyst Synthesis and Photocatalytic Oxidation Processing Based on the Use of Ultrasound vol.378, pp.2, 2010, https://doi.org/10.1007/s41061-020-0293-9
- Synthesis and characterization of Ag/CeO2/graphene nanocomposites as catalysts for water-pollution treatment vol.530, pp.None, 2010, https://doi.org/10.1016/j.apsusc.2020.147297