DOI QR코드

DOI QR Code

Mutational Analysis of the Metal-binding Sites of Peroxide Sensor PerR

  • Won, Young-Bin (Department of Life Science and Research Center for Natural Sciences, Hanyang University) ;
  • Ji, Chang-Jun (Department of Life Science and Research Center for Natural Sciences, Hanyang University) ;
  • Cho, Ju-Hyun (Department of Biology, Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Jin-Won (Department of Life Science and Research Center for Natural Sciences, Hanyang University)
  • Received : 2010.04.08
  • Accepted : 2010.04.27
  • Published : 2010.06.20

Abstract

Bacillus subtilis PerR is a metal-dependent peroxide-sensing transcription factor which uses metal-catalyzed histidine oxidation for peroxide-sensing. PerR contains two metal binding sites, one for structural $Zn^{2+}$ and the other for the regulatory/peroxide-sensing metal. Here we investigated the effect of mutations at both the structural and regulatory metal binding sites on the oxidation of either H37 or H91, two of the peroxide-sensing ligands. All four serine substitution mutants at the structural $Zn^{2+}$ site (C96S, C99S, C136S and C139S) exhibited no detectable oxidation at histidine residues. Two of the alanine substitution mutants at regulatory metal site (H37A and D85A) exhibited selective oxidation preferentially at the H91-containing tryptic peptide, whereas no oxidation was detected in the other mutants (H91A, H93A and D104A). Our results suggest that the cysteine residues coordinating structural $Zn^{2+}$ are essential for peroxide sensing by PerR, and that the C-terminal regulatory metal binding site composed of H91, H93 and D104 can bind $Fe^{2+}$, providing a possible explanation for the peroxide sensing mechanisms by PerR.

Keywords

References

  1. Imlay, J. A. Annu. Rev. Biochem. 2008, 77, 755. https://doi.org/10.1146/annurev.biochem.77.061606.161055
  2. Paget, M. S.; Buttner, M. J. Annu. Rev. Genet. 2003, 37, 91. https://doi.org/10.1146/annurev.genet.37.110801.142538
  3. Lee, J. W.; Soonsanga, S.; Helmann, J. D. Proc. Natl. Acad. Sci. USA 2007, 104, 8743. https://doi.org/10.1073/pnas.0702081104
  4. Wood, M. J.; Storz, G.; Tjandra, N. Nature 2004, 430, 917. https://doi.org/10.1038/nature02790
  5. Kang, J. G.; Paget, M. S.; Seok, Y. J.; Hahn, M. Y.; Bae, J. B.;Hahn, J. S.; Kleanthous, C.; Buttner, M. J.; Roe, J. H. EMBO J.1999, 18, 4292. https://doi.org/10.1093/emboj/18.15.4292
  6. Ilbert, M.; Horst, J.; Ahrens, S.; Winter, J.; Graf, P. C.; Lilie, H.;Jakob, U. Nat. Struct. Mol. Biol. 2007, 14, 556. https://doi.org/10.1038/nsmb1244
  7. van Montfort, R. L.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H.Nature 2003, 423, 773. https://doi.org/10.1038/nature01681
  8. Mongkolsuk, S.; Helmann, J. D. Mol. Microbiol. 2002, 45, 9. https://doi.org/10.1046/j.1365-2958.2002.03015.x
  9. Zuber, P. Annu. Rev. Microbiol. 2009, 63, 575. https://doi.org/10.1146/annurev.micro.091208.073241
  10. Lee, J. W.; Helmann, J. D. J. Biol. Chem. 2006, 281, 23567. https://doi.org/10.1074/jbc.M603968200
  11. Herbig, A. F.; Helmann, J. D. Mol. Microbiol. 2001, 41, 849. https://doi.org/10.1046/j.1365-2958.2001.02543.x
  12. Jacquamet, L.; Traore, D. A.; Ferrer, J. L.; Proux, O.; Testemale,D.; Hazemann, J. L.; Nazarenko, E.; El Ghazouani, A.; Caux-Thang, C.; Duarte, V.; Latour, J. M. Mol. Microbiol. 2009, 73, 20. https://doi.org/10.1111/j.1365-2958.2009.06753.x
  13. Lee, J. W.; Helmann, J. D. Nature 2006, 440, 363. https://doi.org/10.1038/nature04537
  14. Lee, J. W.; Helmann, J. D. Biometals 2007, 20, 485. https://doi.org/10.1007/s10534-006-9070-7
  15. Traore, D. A.; El Ghazouani, A.; Ilango, S.; Dupuy, J.; Jacquamet,L.; Ferrer, J. L.; Caux-Thang, C.; Duarte, V.; Latour, J. M. Mol. Microbiol. 2006, 61, 1211. https://doi.org/10.1111/j.1365-2958.2006.05313.x
  16. Traore, D. A.; El Ghazouani, A.; Jacquamet, L.; Borel, F.; Ferrer,J. L.; Lascoux, D.; Ravanat, J. L.; Jaquinod, M.; Blondin, G.; Caux-Thang, C.; Duarte, V.; Latour, J. M. Nat. Chem. Biol. 2009, 5, 53. https://doi.org/10.1038/nchembio.133

Cited by

  1. PerR Is a Hypersensitive Hydrogen Peroxide Sensor using Iron-mediated Histidine Oxidation vol.290, pp.33, 2015, https://doi.org/10.1074/jbc.M115.664961
  2. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155539
  3. 155 vol.108, pp.6, 2018, https://doi.org/10.1111/mmi.13956
  4. Metalloregulatory proteins: Metal selectivity and allosteric switching vol.156, pp.2, 2010, https://doi.org/10.1016/j.bpc.2011.03.010