DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU)) ;
  • Lee, Yun-O (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU)) ;
  • Kim, Song-Mi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU)) ;
  • Chandrasekaran, Meganathan (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU)) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
  • Received : 2009.12.01
  • Accepted : 2010.04.07
  • Published : 2010.06.20

Abstract

The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

Keywords

References

  1. Franze de Fernandez, M. T.; Eoyang, L.; August, J. T. Nature 1968, 219, 588-590. https://doi.org/10.1038/219588a0
  2. Sun, X.; Wartell, R. M. Biochemistry 2006, 45, 4875-4887. https://doi.org/10.1021/bi0523613
  3. Brennan, R. G.; Link, T. M. Curr. Opin. Microbiol. 2007, 10, 125-133. https://doi.org/10.1016/j.mib.2007.03.015
  4. Lazar, P.; Kim, S.; Lee, Y.; Son, M.; Kim, H. H.; Kim, Y. S.; Lee,K. W. J. Mol. Graph. Mod. 2009, 28, 253-260. https://doi.org/10.1016/j.jmgm.2009.08.003
  5. Marlow, G. E.; Perkyns, J. S.; Pettitt, B. M. Chem. Rev. 1993, 93,2503-2521. https://doi.org/10.1021/cr00023a009
  6. de Haseth, P. L.; Uhlenbeck, O. C. Biochemistry 1980, 19(26),6146-6151. https://doi.org/10.1021/bi00567a030
  7. Lee, S. H. Bull. Korean Chem. Soc. 2009, 30(9), 2158-2160. https://doi.org/10.5012/bkcs.2009.30.9.2158
  8. Lee, S. H. Bull. Korean Chem. Soc. 2006, 27(8), 1154-1158. https://doi.org/10.5012/bkcs.2006.27.8.1154
  9. Oh, K. J.; Klein M. L. Bull. Korean Chem. Soc. 2009, 30(9), 2087-2092. https://doi.org/10.5012/bkcs.2009.30.9.2087
  10. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Comm. 1995, 91, 43-56. https://doi.org/10.1016/0010-4655(95)00042-E
  11. van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701-1718. https://doi.org/10.1002/jcc.20291
  12. Eric Sorin, J.; Vijay Pande, S. Biophys. J. 2005, 88, 2472-2493. https://doi.org/10.1529/biophysj.104.051938
  13. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.;Klein, M. L. J. Chem. Phys. 1983, 79, 926-935. https://doi.org/10.1063/1.445869
  14. Essman, U.; Perela, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577-8592. https://doi.org/10.1063/1.470117
  15. Berendsen, H. J. C.; Postma, J. P. M.; Di Nola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684-3690. https://doi.org/10.1063/1.448118
  16. Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182-7190. https://doi.org/10.1063/1.328693
  17. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comp. Chem. 1997, 18, 1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  18. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comp. Phys.1977, 23, 327-341. https://doi.org/10.1016/0021-9991(77)90098-5
  19. Reynolds, C.; Damerell, D.; Jones, S. Bioinformatics 2009, 25,413-414. https://doi.org/10.1093/bioinformatics/btn584
  20. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235-242. https://doi.org/10.1093/nar/28.1.235

Cited by

  1. The bacterial protein Hfq: much more than a mere RNA-binding factor vol.38, pp.4, 2012, https://doi.org/10.3109/1040841X.2012.664540
  2. ITP Adjuster 1.0: A New Utility Program to Adjust Charges in the Topology Files Generated by the PRODRG Server vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/803151
  3. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein–RNA Complexes? vol.11, pp.3, 2015, https://doi.org/10.1021/ct5008108
  4. Computational approach to ensure the stability of the favorable ATP binding site in E. coli Hfq vol.29, pp.4, 2010, https://doi.org/10.1016/j.jmgm.2010.11.003
  5. Molecular dynamics of the salt dependence of a cold-adapted enzyme: endonuclease I vol.33, pp.11, 2010, https://doi.org/10.1080/07391102.2014.1002007