DOI QR코드

DOI QR Code

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V. (The Research Institute for Catalysis, Chonnam National University) ;
  • Karthikeyan, K. (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Amaresh, S. (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Y.S. (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2009.12.12
  • Accepted : 2010.03.25
  • Published : 2010.06.20

Abstract

$LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Keywords

References

  1. Thackeray, M. Nat Mater. 2002, 1, 81. https://doi.org/10.1038/nmat736
  2. Manthiram, A.; Goodenough, J. B. J. Solid State Chem. 1991, 71,349. https://doi.org/10.1016/0022-4596(87)90242-8
  3. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Energy Environ. Sci. 2008, 1, 621. https://doi.org/10.1039/b811802g
  4. Li, Z.; Zhang, D.; Yang, F. J. Mater. Sci. 2008, 44, 2435. https://doi.org/10.1007/s10853-009-3316-z
  5. Padhi, A. K.; Nanjundswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  6. Jugovic, D.; Uskokovic, D. J. Power Sources 2009, 190, 538. https://doi.org/10.1016/j.jpowsour.2009.01.074
  7. Legagneur, V.; An, Y.; Mosbah, A.; Portal, R.; Le Gal La Salle, A.;Verbaere, A.; Guyomard, D.; Piffard, Y. Solid State Ionics 2001,139, 37. https://doi.org/10.1016/S0167-2738(00)00813-4
  8. Dong, Y. Z.; Zhao, Y. M.; Fu, P.; Zhou, H.; Hou, X. M. J. Alloys Comp. 2008, 461, 585. https://doi.org/10.1016/j.jallcom.2007.07.099
  9. Dong, Y. Z.; Zhao, Y. M.; Shi, Z. D.; An, X. N.; Fu, P.; Chen, L.Electrochim. Acta 2008, 53, 2339. https://doi.org/10.1016/j.electacta.2007.09.050
  10. Allen, J. L.; Xu, K.; Zhang, S. S.; Jow, T. R. Mater. Res. Soc. Symp. Proc. 2002, 730, V1.8.
  11. Reddy Ch, V. S.; Walker, E. H. Jr.; Wicker Sr, S. A.; Williams, Q.L.; Kalluru, R. R. Curr. Appl. Phys. 2009, 9, 1195. https://doi.org/10.1016/j.cap.2009.01.012
  12. Lim, H. H.; Chang, I. C.; Lee, S. B.; Karthikeyan, K.; Aravindan,V.; Lee, Y. S. J. Alloys and Compounds 2010, 495, 181. https://doi.org/10.1016/j.jallcom.2010.01.115
  13. Yang, S.; Song, H.; Chen, X. Electrochem Commun. 2006, 8, 137. https://doi.org/10.1016/j.elecom.2005.10.035

Cited by

  1. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries vol.4, pp.9, 2011, https://doi.org/10.1039/c0ee00713g
  2. Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries vol.22, pp.14, 2012, https://doi.org/10.1039/c2jm00022a
  3. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries vol.113, pp.8, 2013, https://doi.org/10.1021/cr3001862
  4. Synthesis and optimization of NASICON-type Li3V2(PO4)3 by adipic acid-mediated solid-state approach vol.43, pp.6, 2013, https://doi.org/10.1007/s10800-013-0543-4
  5. Stabilization of the LiMnBO3 monoclinic polymorph by the isovalent substitution of manganese for zinc vol.62, pp.2, 2013, https://doi.org/10.1007/s11172-013-0048-7
  6. Nanobeads As an Innovative Anode Material for High Power Lithium Ion Capacitor Applications vol.6, pp.14, 2014, https://doi.org/10.1021/am5019034
  7. -Nanobead Anode and Polyaniline-Nanofiber Cathode with Excellent Cycle Life vol.7, pp.8, 2014, https://doi.org/10.1002/cssc.201402055
  8. Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: a sneak peak vol.21, pp.7, 2015, https://doi.org/10.1007/s11581-015-1463-6
  9. The effect of LiFeBO3/C composite synthetic conditions on the quality of the cathodic material for lithium-ion batteries vol.51, pp.7, 2015, https://doi.org/10.1134/S1023193515070083
  10. Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase: a prospective cathode material for lithium-ion battery vol.23, pp.7, 2017, https://doi.org/10.1007/s11581-017-2019-8
  11. (M=Mn, Fe and Al) Materials with Enhanced Cyclability for Li-Ion Batteries vol.160, pp.1, 2013, https://doi.org/10.1149/2.039301jes
  12. Preparation, crystal structure and photoluminescence of lithium magnesium manganese borate solid solutions, LiMg1-xMnxBO3 vol.512, pp.1, 2010, https://doi.org/10.1016/j.jallcom.2011.09.069
  13. Microwave synthesis of high rate nanostructured LiMnBO3 with excellent cyclic behavior for lithium ion batteries vol.4, pp.60, 2010, https://doi.org/10.1039/c4ra04400b
  14. Structural Feature and Electrochemical Performance of h-LiMnBO3 and Its Carbon Coated Material Prepared by Microwave Synthesis vol.43, pp.9, 2010, https://doi.org/10.1016/s1875-5372(14)60155-7
  15. Effect of PVP Coating on LiMnBO 3 Cathodes for Li-Ion Batteries vol.13, pp.23, 2010, https://doi.org/10.3390/ma13235528
  16. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries vol.43, pp.None, 2010, https://doi.org/10.1016/j.est.2021.103112