DOI QR코드

DOI QR Code

Simulation of Energy Conversion Efficiency of a Solar Cell with Gratings

  • Kim, Sung-Chul (Department of Information and Communication Engineering, Myongji University) ;
  • Sohn, In-Soo (Division of Electronics & Electrical Engineering, Dongguk University-Seoul)
  • Received : 2010.05.26
  • Accepted : 2010.06.03
  • Published : 2010.06.25

Abstract

In this work, a numerical analysis of a CIGS ($CuIn_{1-x}Ga_xSe_2$) solar cell with a rectangular grating on the electrode is presented. The effects of the grating on the energy conversion efficiency are calculated using the RCWA (rigorous coupled wave analysis) method. In conventional CIGS solar cells, the thickness of the light absorption layer (CIGS) is $2\;{\mu}m$, at which the incident light is almost absorbed. By adopting a grating on the electrode and using a less than $1\;{\mu}m$ CIGS layer, we obtained a higher efficiency compared to the conventional solar cells.

Keywords

References

  1. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, and L. C. Kimerling, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111-1~11111-3 (2006). https://doi.org/10.1063/1.2349845
  2. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116-1~061116-3 (2007). https://doi.org/10.1063/1.2768882
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Exp. 15, 16986-17000 (2007). https://doi.org/10.1364/OE.15.016986
  4. J. Krc, G. Cernivec, A. Campa, J. Malmstrom, M. Edoff, F. Smole, and M. Topic, “Optical and electrical modeling of Cu(In,Ga)$Se_2$ solar cells,” Optical and Quantum Electronics, 38, 1115-1123 (2006). https://doi.org/10.1007/s11082-006-9049-1
  5. P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, “Optical characterization of $CuIn_{1-x}Ga_xSe_2$alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94, 879-888 (2003). https://doi.org/10.1063/1.1581345
  6. K. Orgassa, U. Rau, H. W. Schock, and I. U. Werner, “Optical constants of Cu(In,Ga)$Se_2$ thin films form normal incidence transmittance and reflectance,” in Proc. 3rd World Conference on Photovoltaic Energy Conversio (Osaka, Japan, 2003), pp. 372-375.
  7. A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, H. Tampo, H. Shibata, T. Baba, Y. Kimura, S. Nakamura, H. Nakanishi, and S. Niki, “Built-in potential and open circuit voltage of heterojunction $CuIn_{1-x}Ga_xSe_2$ solar cells,” in Proc. Mater. Res. Soc. Symp. (San Francisco, USA, 2005), vol. 865, pp. F5.19.1-F.5.19.6.
  8. H. Kim and B. Lee, “Pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures,” J. Opt. Soc. Am. A 25, 40-54 (2008). https://doi.org/10.1364/JOSAA.25.000040

Cited by

  1. Light management for enhanced efficiency of textured n–i–p type amorphous silicon solar cell vol.132, 2015, https://doi.org/10.1016/j.solmat.2014.09.011
  2. Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.180
  3. A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length vol.20, pp.S6, 2012, https://doi.org/10.1364/OE.20.00A941
  4. Optical Modeling for Polarization-dependent Optical Power Dissipation of Thin-film Organic Solar Cells at Oblique Incidence vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.006
  5. Universal Expression of the Optical Power Dissipation in Multilayer Structures with Complex Permittivity and Permeability vol.51, pp.2R, 2012, https://doi.org/10.7567/JJAP.51.022001
  6. Universal Expression of the Optical Power Dissipation in Multilayer Structures with Complex Permittivity and Permeability vol.51, 2012, https://doi.org/10.1143/JJAP.51.022001
  7. Disorder improves nanophotonic light trapping in thin-film solar cells vol.104, pp.13, 2014, https://doi.org/10.1063/1.4869289
  8. Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.321