References
- G. Lippmann, “La photographie integrale,” Comptes Rendus Acad. Sci. 146, 446-451 (1908).
- S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71-L74 (2005). https://doi.org/10.1143/JJAP.44.L71
- J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Exp. 11, 1862-1875 (2003). https://doi.org/10.1364/OE.11.001862
- J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth-enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790-1792 (2004).
- H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330-5336 (2004). https://doi.org/10.1143/JJAP.43.5330
- Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334-4343 (2006). https://doi.org/10.1364/AO.45.004334
- Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766-3773 (2007). https://doi.org/10.1364/AO.46.003766
- H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Exp. 12, 1067-1076 (2004). https://doi.org/10.1364/OPEX.12.001067
- J. S. Jang, Y. S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Exp. 12, 557-563 (2004). https://doi.org/10.1364/OPEX.12.000557
- J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077-1083 (2004). https://doi.org/10.1364/OPEX.12.001077
- M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45, 9132-9139 (2006). https://doi.org/10.1364/AO.45.009132
- R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Exp. 15, 16255-16260 (2007). https://doi.org/10.1364/OE.15.016255
- I. Biederman, “Recognition-by-component theory: a theory of human image understanding,” Psychol. Rev. 94, 115-147 (1987). https://doi.org/10.1037/0033-295X.94.2.115
- M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1, 275-277 (1998). https://doi.org/10.1038/1089
Cited by
- Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.383
- Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer vol.21, pp.25, 2013, https://doi.org/10.1364/OE.21.031189
- Tiling integral floating display system with optimized viewing window vol.51, pp.22, 2012, https://doi.org/10.1364/AO.51.005453
- Analysis of Condition for Integral Floating Display Inducing Proper Accommodation Responses vol.12, pp.11, 2016, https://doi.org/10.1109/JDT.2016.2604321
- Recent issues on integral imaging and its applications vol.15, pp.1, 2014, https://doi.org/10.1080/15980316.2013.867906
- Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements vol.22, pp.12, 2014, https://doi.org/10.1364/OE.22.014363
- Analysis of color separation reduction through the gap control method in integral imaging vol.15, pp.2, 2014, https://doi.org/10.1080/15980316.2014.902399
- Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.388
- Reflection-type Three-dimensional Screen using Retroreflector vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.225
- Elemental Image Generation Method with the Correction of Mismatch Error by Sub-pixel Sampling between Lens and Pixel in Integral Imaging vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.029
- Integral-floating Display with 360 Degree Horizontal Viewing Angle vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.365
- Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method vol.52, pp.28, 2013, https://doi.org/10.1364/AO.52.006969
- Measurement of accommodation response of human eye to integral floating display vol.54, pp.26, 2015, https://doi.org/10.1364/AO.54.007925
- Projection-type integral imaging system using multiple elemental image layers vol.50, pp.7, 2011, https://doi.org/10.1364/AO.50.000B18
- Enhancement of depth-of-field in a direct projection-type integral imaging system by a negative lens array vol.20, pp.23, 2012, https://doi.org/10.1364/OE.20.026021
- Depth-enhanced integral imaging system based on spatial filtering vol.16, pp.2, 2015, https://doi.org/10.1080/15980316.2015.1014937
- See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element vol.22, pp.23, 2014, https://doi.org/10.1364/OE.22.027958
- Extraction of Distance Information with Nonlinear Correlation of Photon-Counting Integral Imaging vol.20, pp.5, 2016, https://doi.org/10.3807/JOSK.2016.20.5.579
- Simplification of integral imaging system by using a lenticular lens array vol.10, pp.6, 2014, https://doi.org/10.1007/s11801-014-4151-2
- Projection-Type Integral Imaging Using a Pico-projector vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.714
- Distance Extraction by Means of Photon-Counting Passive Sensing Combined with Integral Imaging vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.357
- Reflection-type integral imaging system using a diffuser holographic optical element vol.22, pp.24, 2014, https://doi.org/10.1364/OE.22.029617
- Tiled integral floating display without occlusion effect using an offset lens array and a perpendicular barrier vol.53, pp.27, 2014, https://doi.org/10.1364/AO.53.00G169
- Continuous imaging space in three-dimensional integral imaging vol.22, pp.5, 2013, https://doi.org/10.1088/1674-1056/22/5/054202
- Improvement of fill factor in pinhole-type integral imaging display using a retroreflector vol.25, pp.26, 2017, https://doi.org/10.1364/OE.25.033078
- Simplified Integral Imaging Pickup Method for Real Objects Using a Depth Camera vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.381
- Recent progress in see-through three-dimensional displays using holographic optical elements [Invited] vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A71
- Projection-type integral imaging system using a three-dimensional screen composed of a lens array and a retroreflector film vol.56, pp.13, 2017, https://doi.org/10.1364/AO.56.00F105
- Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera vol.53, pp.1, 2014, https://doi.org/10.1117/1.OE.53.1.015103