DOI QR코드

DOI QR Code

Analysis of Image Visibility in Projection-type Integral Imaging System without Diffuser

  • Park, Soon-Gi (Department of Information Display, Kyung Hee University) ;
  • Song, Byoung-Sub (Department of Information Display, Kyung Hee University) ;
  • Min, Sung-Wook (Department of Information Display, Kyung Hee University)
  • Received : 2010.01.06
  • Accepted : 2010.04.02
  • Published : 2010.06.25

Abstract

We analyze image visibility of a projection-type integral imaging system without diffuser, in terms of the fill factor, which is determined by the relationship between the exit pupil of the projection system and the size and the focal length of the elemental lens. High fill factor is a requirement for good visibility. Moreover, for psychological reasons, for the same fill factor, better visibility is accomplished using a relatively small elemental lens. In this paper, we study image visibility through basic experiments and results.

Keywords

References

  1. G. Lippmann, “La photographie integrale,” Comptes Rendus Acad. Sci. 146, 446-451 (1908).
  2. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71-L74 (2005). https://doi.org/10.1143/JJAP.44.L71
  3. J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Exp. 11, 1862-1875 (2003). https://doi.org/10.1364/OE.11.001862
  4. J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth-enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790-1792 (2004).
  5. H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330-5336 (2004). https://doi.org/10.1143/JJAP.43.5330
  6. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334-4343 (2006). https://doi.org/10.1364/AO.45.004334
  7. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766-3773 (2007). https://doi.org/10.1364/AO.46.003766
  8. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Exp. 12, 1067-1076 (2004). https://doi.org/10.1364/OPEX.12.001067
  9. J. S. Jang, Y. S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Exp. 12, 557-563 (2004). https://doi.org/10.1364/OPEX.12.000557
  10. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077-1083 (2004). https://doi.org/10.1364/OPEX.12.001077
  11. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45, 9132-9139 (2006). https://doi.org/10.1364/AO.45.009132
  12. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Exp. 15, 16255-16260 (2007). https://doi.org/10.1364/OE.15.016255
  13. I. Biederman, “Recognition-by-component theory: a theory of human image understanding,” Psychol. Rev. 94, 115-147 (1987). https://doi.org/10.1037/0033-295X.94.2.115
  14. M. J. Tarr, P. Williams, W. G. Hayward, and I. Gauthier, “Three-dimensional object recognition is viewpoint dependent,” Nat. Neurosci. 1, 275-277 (1998). https://doi.org/10.1038/1089

Cited by

  1. Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.383
  2. Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer vol.21, pp.25, 2013, https://doi.org/10.1364/OE.21.031189
  3. Tiling integral floating display system with optimized viewing window vol.51, pp.22, 2012, https://doi.org/10.1364/AO.51.005453
  4. Analysis of Condition for Integral Floating Display Inducing Proper Accommodation Responses vol.12, pp.11, 2016, https://doi.org/10.1109/JDT.2016.2604321
  5. Recent issues on integral imaging and its applications vol.15, pp.1, 2014, https://doi.org/10.1080/15980316.2013.867906
  6. Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements vol.22, pp.12, 2014, https://doi.org/10.1364/OE.22.014363
  7. Analysis of color separation reduction through the gap control method in integral imaging vol.15, pp.2, 2014, https://doi.org/10.1080/15980316.2014.902399
  8. Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.388
  9. Reflection-type Three-dimensional Screen using Retroreflector vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.225
  10. Elemental Image Generation Method with the Correction of Mismatch Error by Sub-pixel Sampling between Lens and Pixel in Integral Imaging vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.029
  11. Integral-floating Display with 360 Degree Horizontal Viewing Angle vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.365
  12. Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method vol.52, pp.28, 2013, https://doi.org/10.1364/AO.52.006969
  13. Measurement of accommodation response of human eye to integral floating display vol.54, pp.26, 2015, https://doi.org/10.1364/AO.54.007925
  14. Projection-type integral imaging system using multiple elemental image layers vol.50, pp.7, 2011, https://doi.org/10.1364/AO.50.000B18
  15. Enhancement of depth-of-field in a direct projection-type integral imaging system by a negative lens array vol.20, pp.23, 2012, https://doi.org/10.1364/OE.20.026021
  16. Depth-enhanced integral imaging system based on spatial filtering vol.16, pp.2, 2015, https://doi.org/10.1080/15980316.2015.1014937
  17. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element vol.22, pp.23, 2014, https://doi.org/10.1364/OE.22.027958
  18. Extraction of Distance Information with Nonlinear Correlation of Photon-Counting Integral Imaging vol.20, pp.5, 2016, https://doi.org/10.3807/JOSK.2016.20.5.579
  19. Simplification of integral imaging system by using a lenticular lens array vol.10, pp.6, 2014, https://doi.org/10.1007/s11801-014-4151-2
  20. Projection-Type Integral Imaging Using a Pico-projector vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.714
  21. Distance Extraction by Means of Photon-Counting Passive Sensing Combined with Integral Imaging vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.357
  22. Reflection-type integral imaging system using a diffuser holographic optical element vol.22, pp.24, 2014, https://doi.org/10.1364/OE.22.029617
  23. Tiled integral floating display without occlusion effect using an offset lens array and a perpendicular barrier vol.53, pp.27, 2014, https://doi.org/10.1364/AO.53.00G169
  24. Continuous imaging space in three-dimensional integral imaging vol.22, pp.5, 2013, https://doi.org/10.1088/1674-1056/22/5/054202
  25. Improvement of fill factor in pinhole-type integral imaging display using a retroreflector vol.25, pp.26, 2017, https://doi.org/10.1364/OE.25.033078
  26. Simplified Integral Imaging Pickup Method for Real Objects Using a Depth Camera vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.381
  27. Recent progress in see-through three-dimensional displays using holographic optical elements [Invited] vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A71
  28. Projection-type integral imaging system using a three-dimensional screen composed of a lens array and a retroreflector film vol.56, pp.13, 2017, https://doi.org/10.1364/AO.56.00F105
  29. Development of a real-time integral imaging display system based on graphics processing unit parallel processing using a depth camera vol.53, pp.1, 2014, https://doi.org/10.1117/1.OE.53.1.015103