DOI QR코드

DOI QR Code

Development of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing

  • Byun, Kyung-Min (Department of Biomedical Engineering, Kyung Hee University)
  • 투고 : 2010.05.25
  • 심사 : 2010.06.08
  • 발행 : 2010.06.25

초록

Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivity, selectivity, and throughput. In this paper, optical and physical properties of plasmonic nanostructures and their contributions to a realization of enhanced optical detection platforms are reviewed. Following vast surveys of the exploitation of metallic nanostructures supporting localized field enhancement, we will propose an outlook for future directions associated with a development of new types of plasmonic sensing substrates

키워드

참고문헌

  1. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,”Nature 332, 615-617 (1988). https://doi.org/10.1038/332615a0
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  3. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
  4. M. Malmqvist, “Surface plasmon resonance for detection and measurements of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5, 282-286 (1993). https://doi.org/10.1016/0952-7915(93)90019-O
  5. T. Akimoto, S. Sasaki, K. Ikebukuro, and I. Karube, “Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy,” Biosens. Bioelectron. 15, 355-362 (2000). https://doi.org/10.1016/S0956-5663(00)00091-9
  6. B. Johnsson, S. Lofas, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Chem. 198, 268-277 (1991).
  7. R. Karlsson and A. Falt, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200, 121-133 (1997). https://doi.org/10.1016/S0022-1759(96)00195-0
  8. A. L. Plant, M. Brigham-Burke, E. C. Petrella, and D. J. O’Shannessy, “Phospholipid/alkanethiol bilayers for cellsurface receptor studies by surface plasmon resonance,” Anal. Biochem. 226, 342-348 (1995). https://doi.org/10.1006/abio.1995.1234
  9. S. A. Kim, K. M. Byun, J. Lee, J. H. Kim, D.-G. A. Kim, H. Baac, M. L. Shuler, and S. J. Kim, “Optical measurement of neural activity using surface plasmon resonance,” Opt. Lett. 33, 914-916 (2008). https://doi.org/10.1364/OL.33.000914
  10. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73, 1-7 (2001). https://doi.org/10.1021/ac0010431
  11. S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, “Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor,” J. Opt. Soc. Korea 13, 392-397 (2009). https://doi.org/10.3807/JOSK.2009.13.3.392
  12. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10, 1-4 (1995). https://doi.org/10.1016/0956-5663(95)96789-2
  13. X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106-112 (2002). https://doi.org/10.1016/S0925-4005(01)01080-2
  14. H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82-87 (1998). https://doi.org/10.1016/S0040-6090(98)00820-7
  15. M. Piliarik and J. Homola, “Surface plasmon resonance sensors: approaching their limits?,” Opt. Exp. 17, 16505-16517 (2009). https://doi.org/10.1364/OE.17.016505
  16. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004). https://doi.org/10.1002/adma.200400271
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
  18. S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10, 3427-3430 (1994). https://doi.org/10.1021/la00022a011
  19. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996). https://doi.org/10.1021/la9502711
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003). https://doi.org/10.1021/jp026731y
  21. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219-228 (2006). https://doi.org/10.2217/17435889.1.2.219
  22. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007). https://doi.org/10.1016/j.bios.2007.07.001
  23. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137-141 (2003). https://doi.org/10.1016/S0030-4018(03)01357-9
  24. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid. Interf. Sci. 143, 513-526 (1991). https://doi.org/10.1016/0021-9797(91)90284-F
  25. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Auenhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177-5183 (1998). https://doi.org/10.1021/ac9809940
  26. Y. Li, A. W. Wark, H. J. Lee, and R. M. Corn, “Singlenucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions,” Anal. Chem. 78, 3158-3164 (2006). https://doi.org/10.1021/ac0600151
  27. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125-135 (2005). https://doi.org/10.1016/j.ab.2005.05.001
  28. X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi, and H. Zhang, “Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4,” Anal. Biochem. 333, 99-104 (2004). https://doi.org/10.1016/j.ab.2004.05.048
  29. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B 54, 118-124 (1999). https://doi.org/10.1016/S0925-4005(98)00329-3
  30. E. F. A. de Vries, R. B. M. Schasfoort, J. van der Plas,and J. Greve, “Nucleic acid detection with surface plasmon resonance using cationic latex,” Biosens. Bioelectron. 9,509-514 (1994). https://doi.org/10.1016/0956-5663(94)90013-2
  31. E. Fujii, T. Koike, K. Nakamura, S. Sasaki, K. Kurihara, D. Citterio, Y. Iwasaki, O. Niwa, and K. Suzuki, “Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors,” Anal. Chem. 74, 6106-6110 (2002). https://doi.org/10.1021/ac0258655
  32. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000). https://doi.org/10.1021/ja001215b
  33. E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105, 11159-11168 (2001). https://doi.org/10.1021/jp011424y
  34. T. Zhu, X. Zhang, J. Wang, X. Fu, and Z. Liu, “Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers,” Thin Solid Films 327-329, 595-598 (1998). https://doi.org/10.1016/S0040-6090(98)00720-2
  35. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanoclusterembedded dielectric film,” Biosens. Bioelectron. 19, 1465-1471(2004). https://doi.org/10.1016/j.bios.2003.12.001
  36. J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77, 4282-4285 (2005). https://doi.org/10.1021/ac050227i
  37. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494-521 (2008). https://doi.org/10.1021/cr068126n
  38. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986). https://doi.org/10.1364/JOSAA.3.001780
  39. L. Li and C. W. Haggans, “Convergence of the coupledwave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993). https://doi.org/10.1364/JOSAA.10.001184
  40. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Exp. 13, 3737-3742 (2005). https://doi.org/10.1364/OPEX.13.003737
  41. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowiremediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006). https://doi.org/10.1016/j.snb.2005.11.038
  42. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007). https://doi.org/10.1364/JOSAA.24.000522
  43. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034 (2009). https://doi.org/10.1364/JOSAA.26.001027
  44. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). https://doi.org/10.1103/PhysRevB.64.235402
  45. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006). https://doi.org/10.1073/pnas.0605889103
  46. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004). https://doi.org/10.1063/1.1629280
  47. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007). https://doi.org/10.1364/OL.32.001902
  48. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). https://doi.org/10.1088/0957-4484/20/31/315501
  49. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094 (2007). https://doi.org/10.1364/OL.32.003092
  50. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26, 1472-1478 (2008). https://doi.org/10.1109/JLT.2008.922182
  51. A. J. Haes, S. Zou, G. C. Schatz, and R. P. van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004). https://doi.org/10.1021/jp0361327
  52. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581-583 (1983). https://doi.org/10.1364/OL.8.000581
  53. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957-960 (1982). https://doi.org/10.1103/PhysRevLett.48.957
  54. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, USA, 1998).
  55. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” J. Phys. Chem. B 103, 4212-4217 (1999). https://doi.org/10.1021/jp984796o
  56. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Exp. 6, 213-219 (2000). https://doi.org/10.1364/OE.6.000213
  57. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, “Synthesis and optical properties of “Branched” gold nanocrystals,” Nano Lett. 4, 327-330 (2004). https://doi.org/10.1021/nl0351542
  58. A. J. Haes and R. P. van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596-10604 (2002). https://doi.org/10.1021/ja020393x
  59. J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, and R. P. van Duyne, “Resonance surface plasmon spectroscopy:low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128, 11004-11005 (2006). https://doi.org/10.1021/ja0636082
  60. A. D. McFarland and R. P. van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057-1062 (2003). https://doi.org/10.1021/nl034372s
  61. A. Roucoux, J. Schulz, and H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts?,” Chem. Rev. 102, 3757-3778 (2002). https://doi.org/10.1021/cr010350j
  62. Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, and Y. Xia, “Synthesis and mechanistic study of palladium nanobars and nanorods,” J. Am. Chem. Soc. 129, 3665-3675(2007). https://doi.org/10.1021/ja0688023
  63. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389-1393 (2001). https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
  64. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787-796 (1989). https://doi.org/10.1364/JOSAB.6.000787
  65. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661-6664 (1997). https://doi.org/10.1021/jp971656q
  66. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257-264 (2001). https://doi.org/10.1021/ar960016n
  67. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243-247 (1998). https://doi.org/10.1016/S0009-2614(98)00277-2
  68. T. Ohno, J. A. Bain, and T. E. Schlesinger, “Observation of geometrical resonance in optical throughput of very small aperture lasers associated with surface plasmons,” J. Appl. Phys. 101, 083107 (2007). https://doi.org/10.1063/1.2718880
  69. C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of sizedependent nanoparticle optics,” J. Phys. Chem. B 105, 5599-5611 (2001). https://doi.org/10.1021/jp010657m
  70. J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
  71. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  72. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007). https://doi.org/10.1038/nature05350
  73. H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6, 2104-2108 (2006). https://doi.org/10.1021/nl061670r
  74. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049-1057 (2008). https://doi.org/10.1021/ar800074d
  75. A. de Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094-4100 (2007). https://doi.org/10.1021/ac070001a
  76. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813-4815 (2004). https://doi.org/10.1021/la0493621
  77. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37, 37-47 (2005). https://doi.org/10.1016/j.ymeth.2005.05.006
  78. J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995). https://doi.org/10.1016/0925-4005(95)01714-3
  79. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523, 165-170 (2004). https://doi.org/10.1016/j.aca.2004.07.045
  80. M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003). https://doi.org/10.1016/S0925-4005(03)00034-0
  81. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 337, 528-539 (2003).
  82. P. Stocker, B. Menges, U. Langbein, and S. Mittler, “Multimode waveguide mode surface plasmon coupling: a sensitivity and device realizability study,” Sens. Actuators A 116, 224-231 (2004). https://doi.org/10.1016/j.sna.2004.03.072
  83. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69, 4939-4947 (1997). https://doi.org/10.1021/ac9709763
  84. A. V. Kabashin and P. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Comm.150, 5-8 (1998). https://doi.org/10.1016/S0030-4018(97)00726-8

피인용 문헌

  1. Cavity-enhanced localized plasmon resonance sensing vol.97, pp.25, 2010, https://doi.org/10.1063/1.3530795
  2. Direct femtosecond laser ablation of copper with an optical vortex beam vol.116, pp.11, 2014, https://doi.org/10.1063/1.4896068
  3. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors vol.11, pp.12, 2011, https://doi.org/10.3390/s110201565
  4. Microcavity plasmonics: strong coupling of photonic cavities and plasmons vol.7, pp.2, 2013, https://doi.org/10.1002/lpor.201100041
  5. Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
  6. All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.432
  7. Improved biomolecular detection based on a plasmonic nanoporous gold film fabricated by oblique angle deposition vol.23, pp.14, 2015, https://doi.org/10.1364/OE.23.018777
  8. Investigating the optical NOR gate using plasmonic nanorods vol.29, pp.5, 2016, https://doi.org/10.1002/jnm.2142
  9. Investigating the optical nand gate using plasmonic nano-spheres vol.47, pp.11, 2015, https://doi.org/10.1007/s11082-015-0236-9
  10. Investigating the optical XNOR gate using plasmonic nano-rods vol.19, 2016, https://doi.org/10.1016/j.photonics.2016.02.001
  11. Enhanced surface plasmon resonance detection using porous ITO–gold hybrid substrates vol.107, pp.3, 2012, https://doi.org/10.1007/s00340-012-4998-5
  12. Nano-bio interfaces probed by advanced optical spectroscopy: From model system studies to optical biosensors vol.58, pp.21, 2013, https://doi.org/10.1007/s11434-013-5700-y
  13. A Localized Surface Plasmon Resonance-Based Portable Instrument for Quick On-Site Biomolecular Detection vol.65, pp.2, 2016, https://doi.org/10.1109/TIM.2015.2465691
  14. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source vol.21, pp.11, 2011, https://doi.org/10.1088/0960-1317/21/11/115001
  15. Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles vol.20, pp.5, 2016, https://doi.org/10.3807/JOSK.2016.20.5.601
  16. Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors vol.1, pp.3, 2011, https://doi.org/10.1007/s13534-011-0026-7
  17. Active Focusing of Light in Plasmonic Lens via Kerr Effect vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.305
  18. Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.305
  19. A model of ion transport processes along and across the neuronal membrane vol.16, pp.1, 2017, https://doi.org/10.3233/JIN-160002
  20. Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.082
  21. All-optical XOR and NAND logic gates based on plasmonic nanoparticles vol.392, 2017, https://doi.org/10.1016/j.optcom.2017.02.007
  22. Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method vol.20, pp.1, 2016, https://doi.org/10.3807/JOSK.2016.20.1.165
  23. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film vol.22, pp.10, 2013, https://doi.org/10.1088/1674-1056/22/10/104213
  24. A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet vol.21, pp.23, 2013, https://doi.org/10.1364/OE.21.028083
  25. Metallic Nanowire Array–Polymer Hybrid Film for Surface Plasmon Resonance Sensitivity Enhancement and Spectral Range Enlargement vol.9, pp.2, 2014, https://doi.org/10.1007/s11468-013-9627-6
  26. Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application pp.18638880, 2018, https://doi.org/10.1002/lpor.201800219