Chemical and Thermal Characterizations of Electron Beam Irradiated Jute Fibers

전자빔 조사된 황마섬유의 화학적 및 열적 특성분석

  • Ji, Sang Gyu (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Byung Cheol (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
  • 지상규 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과) ;
  • 이병철 (한국원자력연구원 양자광학연구부)
  • Received : 2010.10.16
  • Accepted : 2010.12.09
  • Published : 2010.12.30

Abstract

In the present work, the effect of electron beam irradiation on the chemical and thermal characteristics of cellulose-based jute fibers was explored by means of chemical analysis, electron spin resonance analysis, ATR-FTIR spectroscopy, thermogravimetric analysis and thermomechanical analysis. Jute fiber bundles were uniformly irradiated in the range of 2~100 kGy by a continuous method using a conveyor cartin an electron beam tunnel. Electron beam treatment, which is a physical approach to change the surfaces, more or less changed the chemical composition of jute fibers. It was also found that the radicals on the jute fibers can be increasingly formed with increasing electron beam intensity. However, the electron beam irradiation did not change significantly the chemical functional groups existing on the jute fiber surfaces. The electron beam irradiation influenced the thermal stability and thermal shrinkage/expansion behavior and the behavior depended on the electron beam intensity.

본 연구에서는 셀룰로스계 섬유인 황마(jute)의 화학적 특성 및 열적 특성에 미치는 전자빔조사의 영향을 원소분석, ESR분석, ATR-FTIR 분광분석, 열중량분석 그리고 열기계분석을 통하여 탐구하였다. 전자빔 조사는 전자빔터널 내에서 콘베이어 카트를 이용한 연속식 방법에 의해 2~100 kGy까지 다양한 세기의 전자빔이 황마섬유다발에 일정하게 행하였다. 전자빔 처리는 황마섬유의 화학조성을 다소 변화시켰으며, 전자빔세기가 커질수록 황마섬유에 형성된 라디칼이 증가하는 것으로 확인되었다. 그러나 전자빔 조사는 황마섬유표면의 화학관능기를 크게 변화시키지 않는 것으로 판단되었다. 또한 전자빔 조사는 황마섬유의 열안정성과 열수축/팽창 거동에 영향을 주었으며, 그 거동은 전자빔세기에 의존하였다.

Keywords

References

  1. D. Hokens, A. K. Mohanty, M. Misra, and L. T. Drzal, Polym. Compos., 42, 70 (2001).
  2. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Tech., 13, 460 (2002).
  3. J. Nickel and U. Riedel, Materialstoday, April, 44 (2003).
  4. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interfaces, 8, 313 (2001). https://doi.org/10.1163/156855401753255422
  5. Q. Zhou, D. Cho, B. K. Song, and H.-J. Kim, Compos. Interfaces, 16, 781 (2009). https://doi.org/10.1163/092764409X12477449494437
  6. S.-Y. Lee, S.-J. Chun, G.-H. Doh, and I.-A. Kang, J. Compos. Mater., 43, 1639 (2009) https://doi.org/10.1177/0021998309339352
  7. I. V. Weyenberg, T. C. Truong, B. Vangrimde, and I. Verpoest, Compos. Part A, 37, 1368 (2006). https://doi.org/10.1016/j.compositesa.2005.08.016
  8. V. Alvarez, I. Mondragon, and A. Vazquez, Compos. Interfaces, 14, 605 (2007). https://doi.org/10.1163/156855407782106564
  9. D. Cho, H. S. Lee, S. O. Han, and L. T. Drzal, Adv. Compos. Mater., 16, 315 (2007). https://doi.org/10.1163/156855107782325159
  10. Y. H. Han, S. O, Han, D. Cho, and H. I. Kim, Macromol. Symp., 245, 539 (2006). https://doi.org/10.1002/masy.200651378
  11. A. Alberti, S. Bertini, G. Gastaldi, N. Iannaccone, D. Macciantelli, G. Torri, and E. Vismara, Euro. Polym. J., 41, 1787 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.016
  12. M. Zenkiewicz, Radiat. Phys. Chem., 69, 373 (2004). https://doi.org/10.1016/j.radphyschem.2003.08.011
  13. N. Getoff, Radiat, Phys. Chem., 65, 437 (2002). https://doi.org/10.1016/S0969-806X(02)00342-0
  14. S. G. Ji, D. Cho, W. H. Park, and B. C. Lee, Macromol. Res., 18, 919 (2010). https://doi.org/10.1007/s13233-010-0916-z
  15. E. Y. Lee, J. Y. Jeong, J. E. Noh, D. J. Jo, and J. H. Kwon, Korean J. Food Sci. Tech., 34, 18 (2002).
  16. J. M. Seo, D. Cho W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioener., 1, 331 (2007). https://doi.org/10.1166/jbmb.2007.007