Synthesis and Properties of PEGMA/Na-MMT with Acrylic Monomer by Free-Radical Polymerization

Free Radical 중합에 의한 PEGMA/Na-MMT와 아크릴단량체의 합성 및 물성

  • Received : 2010.07.24
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

Na-MMT intercalated with PEGMA macromer was prepared using an EtAc/acetone mixture (1/1 by volume) as a solvent. PEGMA/(Na-MMT)-co-MMA/MA nanocomposites was synthesized by copolymerizing intercalated compound with MMA and MA, and then characterization was performed. The results of X-ray diffraction (XRD) showed that in the case of Na-MMT intercalated with PEGMA macromer the d-spacings of silicate of Na-MMT increased with increasing of Na-MMT loading. As the Na-MMT loading increases Tg showed increasing trend through the DSC measurement. TGA result showed that thermal stability of PEGMA/(Na-MMT)-co-MMA/MA nanocomposites improved a little more than the pure PEGMA-co-MMA/MA.

PEGMA macromer를 Na-MMT에 삽입한 후 MMA 및 MA 단량체와의 공중합을 행하여 PEGMA/(Na-MMT)-co-MMA/MA 나노복합재료를 합성하고 이의 특성결정을 행하였다. 제조된 나노복합재료를 XRD로 관찰한 결과, Na-MMT에 PEGMA를 삽입하였을 경우 Na-MMT 양이 증가함에 따라 Na-MMT의 실리케이트 층간거리는 증가하였다. DSC 측정으로부터 Na-MMT 첨가량이 늘어날수록 Tg는 높아지는 경향을 보였다. TGA 측정을 통하여 PEGMA/(Na-MMT)-co-MMA/MA 나노복합재료는 순수한 PEGMA-co-MMA/MA보다 열안정성이 다소 향상됨을 확인하였다.

Keywords

References

  1. J. L. Hedric, J. W. Labadie, T. D. Palmer, and T. P. Russell, Polyimides: Material chemistry and characterization, Ed by C. Feger, Elsevier Sci., publisher B. V., 61, Amsterdam (1989).
  2. T. A. Gag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001). https://doi.org/10.1016/S0032-3861(00)00824-7
  3. A. Usuki, M. Kawasumi, Y. Kojima, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179
  4. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Chem. Mater., 6, 1017 (1994). https://doi.org/10.1021/cm00043a025
  5. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33, 1047 (1995). https://doi.org/10.1002/pola.1995.080330707
  6. Y. S. Kang, K. H. Kim, H. Lee, and H. H. Cho, J. Korean Fiber Soc., 41, 140 (2004).
  7. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer (Korea), 26, 381 (2002).
  8. J. W. Cho and D. R. Paul, Polymer, 42, 1083 (2001). https://doi.org/10.1016/S0032-3861(00)00380-3
  9. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 49, 1259 (1993). https://doi.org/10.1002/app.1993.070490715
  10. K. A. Carrado and L. Xu, Chem. Mater., 10, 1440 (1998). https://doi.org/10.1021/cm970814n
  11. S. J. Park, D. I. Seo, and J. R. Lee, J. Colloid Interface Sci., 251, 160 (2002). https://doi.org/10.1006/jcis.2002.8379
  12. T. J. Pinnavaia and G. W. Beall (Editors), Polymer-Clay Nanocomposites, John Wiley & Sons, Ltd., New York (2000).
  13. J. H. Shim, E. S. Kim, J. H. Joo, and J. S. Yoon, J. of Applied Polym. Sci., 102, 4983 (2007).
  14. M. Alexandre and P. Dubois, Mater. Sci. Eng. Reports, 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  15. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  16. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer, 40, 4877 (1999). https://doi.org/10.1016/S0032-3861(98)00716-2
  17. P. Aranda and E. Ruiz-Hitzky, Chem. Mater., 4, 1395 (1992). https://doi.org/10.1021/cm00024a048
  18. J. Wu and M. M. Lerner, Chem. Mater., 5, 835 (1993). https://doi.org/10.1021/cm00030a019