Surface Immobilization of Amphiphilic Comb-like Polymer on Polydimethylsiloxane and in vitro Cytotoxicity Assay

양친성 빗 모양 고분자의 PDMS 표면 고정화 및 세포독성 평가

  • Choi, Jaeyoo (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Jung, Jaeyeon (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Cheng, Jie (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Lee, Jonghwan (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Hyun, Jinho (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Kim, Hyunjoong (Lab of Adhesion and Bio-Composites, Program in Environmental Materials Science, Seoul National University)
  • 최재유 (서울대학교 바이오시스템.소재학부, 농업생명과학연구원) ;
  • 정재연 (서울대학교 바이오시스템.소재학부, 농업생명과학연구원) ;
  • 정걸 (서울대학교 바이오시스템.소재학부, 농업생명과학연구원) ;
  • 이종환 (서울대학교 바이오시스템.소재학부, 농업생명과학연구원) ;
  • 현진호 (서울대학교 바이오시스템.소재학부, 농업생명과학연구원) ;
  • 김현중 (서울대학교 환경재료과학전공 바이오복합재료 및 접착과학 연구실)
  • Received : 2010.05.07
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

It described the modification of polydimethylsiloxane (PDMS) with amphiphilic methyl methacrylate-based polyethylene glycol (PMMA-b-PEG) to enhance the hydrophilicity of a PDMS surface and cytotoxicity of it. PMMA-b-PEG solutions in water/ethanol mixture was spun-cast on the PDMS surface and the surface was characterized by long-term measurement of water contact angle. The morphology of PDMS surfaces coated with PMMA-b-PEG was characterized by field emission scanning electron microscopy and atomic force microscope. Cytotoxicity of the modified surfaces was investigated by MTT assay which would be necessary for the evaluation of tissue compatibility after implantation of the materials. Based on the MTT assay, PDMS coated with PMMA-b-PEG didn't show any significant cytotoxcity.

본 연구에서는 양친성 빗 모양 고분자인 methyl methacrylate-based polyethylene glycol (PMMA-b-PEG)의 박막을 polydimethylsiloxane (PDMS) 표면에 형성하여 표면 친수성을 증진시키고 고분자 코팅에 따른 세포 독성의 증가 여부를 확인하고자 하였다. PMMA-b-PEG 고분자 용액을 스핀 코팅의 방법으로 PDMS 표면에 도포하였으며, 장기간의 접촉각 측정을 통하여 표면 성질의 변화를 관찰하였고, 박막의 표면 안정성은 전계 방출 주사전자현미경과 원자힘 현미경 분석을 통하여 확인하였다. 안정적으로 형성된 PMMA-b-PEG 박막의 세포 독성여부는 MTT 시험법을 이용하여 확인하였다. 이러한 세포 독성 평가(in vitro)는 생체주입 후에 있을 조직적합성 평가(in vivo)에 앞서 주요한 결과 자료로 활용될 수 있으며, PMMA-b-PEG 박막이 형성된 PDMS의 경우 생체주입이 가능함을 나타내었다.

Keywords

References

  1. M. L. van Poll, F. Zhou, M. Ramstedt, L. Hu, and W. T. S. Huck, Angew. Chem.-Int. Edit., 46, 6634 (2007). https://doi.org/10.1002/anie.200702286
  2. E. J. Botzolakis, A. Maheshwari, H. J. Feng, A. H. Lagrange, J. H. Shaver, N. J. Kassebaum, R. Venkataraman, F. Baudenbacher, and R. L. MacDonald, Journal of Neuroscience Methods, 177, 294 (2009). https://doi.org/10.1016/j.jneumeth.2008.10.014
  3. A. Mata, A. J. Fleischman, and S. Roy, Biomed. Microdevices, 7, 281 (2005). https://doi.org/10.1007/s10544-005-6070-2
  4. J. H. L. S. B. Park, K. A. NA, J. Y. Jung, M. J. Kim, S. J. Park, and J. H. Hyun, Adhesion and Interface, 10, 77 (2009).
  5. J. W. Zhou, A. V. Ellis, and N. H. Voelcker, Electrophoresis, 31, 2 (2010). https://doi.org/10.1002/elps.200900475
  6. J. S. Katz, J. Doh, and D. J. Irvine, Langmuir, 22, 353 (2006). https://doi.org/10.1021/la0523098
  7. D. J. Irvine, A. M. Mayes, and L. G. Griffith, Biomacromolecules, 2, 85 (2001). https://doi.org/10.1021/bm005584b
  8. I. Wong and C. M. Ho, Microfluidics and Nanofluidics, 7, 291 (2009). https://doi.org/10.1007/s10404-009-0443-4
  9. Z. Q. Niu, F. Gao, X. Y. Jia, W. P. Zhang, W. Y. Chen, and K. Y. Qian, Colloid Surf. A-Physicochem. Eng. Asp., 272, 170 (2006). https://doi.org/10.1016/j.colsurfa.2005.07.024
  10. A. J. Wang, J. J. Xu, Q. Zhang, and H. Y. Chen, Talanta, 69, 210 (2006). https://doi.org/10.1016/j.talanta.2005.09.029
  11. G. T. Roman and C. T. Culbertson, Langmuir, 22, 4445 (2006). https://doi.org/10.1021/la053085w
  12. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir, 17, 5605 (2001). https://doi.org/10.1021/la010384m
  13. R. G. Chapman, E. Ostuni, M. N. Liang, G. Meluleni, E. Kim, L. Yan, G. Pier, H. S. Warren, and G. M. Whitesides, Langmuir, 17, 1225 (2001). https://doi.org/10.1021/la001222d
  14. D. P. Wu, B. X. Zhao, Z. P. Dai, J. H. Qin, and B. C. Lin, Lab Chip, 6, 942 (2006). https://doi.org/10.1039/b600765a
  15. E. A. S. Doherty, R. J. Meagher, M. N. Albarghouthi, and A. E. Barron, Electrophoresis, 24, 34 (2003). https://doi.org/10.1002/elps.200390029
  16. D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, and B. C. Lin, Electrophoresis, 26, 211 (2005). https://doi.org/10.1002/elps.200406157
  17. C. Y. Liu, X. Xu, and J. R. Chen, Can. J. Anal. Sci. Spectrosc., 53, 171 (2008).
  18. J. Jung, K. Na, B. Shin, O. Kim, J. Lee, K. Yun, and J. Hyun, J. Biomater. Sci.-Polym. Ed., 19, 161 (2008). https://doi.org/10.1163/156856208783432507
  19. N. Nath, J. Hyun, H. Ma, and A. Chilkoti, Surf. Sci., 570, 98 (2004). https://doi.org/10.1016/j.susc.2004.06.182
  20. J. L. Fritz and M. J. Owen, J. ADHESION, 54, 33 (1995). https://doi.org/10.1080/00218469508014379