Comparison of C-reactive Protein between Capillary and Venous Blood in Children

소아에 있어서 C-반응성 단백의 모세혈 및 정맥혈 검사의 비교평가

  • Jin, Ji Hoon (Department of Pediatrics, College of Medicine, Inha University) ;
  • Jung, Soo Ho (Department of Pediatrics, College of Medicine, Inha University) ;
  • Hong, Young Jin (Department of Pediatrics, College of Medicine, Inha University) ;
  • Son, Byong Kwan (Department of Pediatrics, College of Medicine, Inha University) ;
  • Kim, Soon Ki (Department of Pediatrics, College of Medicine, Inha University)
  • 진지훈 (인하대학교 의과대학 소아과학교실) ;
  • 정수호 (인하대학교 의과대학 소아과학교실) ;
  • 홍영진 (인하대학교 의과대학 소아과학교실) ;
  • 손병관 (인하대학교 의과대학 소아과학교실) ;
  • 김순기 (인하대학교 의과대학 소아과학교실)
  • Received : 2010.09.07
  • Accepted : 2010.10.21
  • Published : 2010.12.25

Abstract

Purpose : In evaluation of patients, laboratory results are crucial in determination of a treatment plan. Obtaining venous blood from infants and children is a difficult procedure. Substitution of a capillary blood sample for a venous blood sample has been suggested. However, there are few studies showing mutual correlation between C-reactive protein (CRP) results in capillary and venous blood. This study was designed to determine whether the result of the capillary sample is the same as the result of the venous blood sample. Methods : After informed consent, a pair of venous and fingertip capillary blood samples were simultaneously collected from 100 children. The LC-178CRPTM was used for analysis of capillary blood and the Hitachi 7180 automatic hematology analyzer was used for analysis of venous blood. We compared CRP of both venous and capillary blood samples. Results were analyzed by crosstabulation analysis, simple regression analysis and the Bland Altman Plot method. Results : A close correlation (90.63%) was observed between capillary and venous blood analyzed by crosstabulation analysis. CRP results were similar between the two groups and showed a high coefficient correlation ($\beta$=1.3434, $R^2$=0.9888, P<0.0001) when analyzed by a simple regression model. The average value in venous blood was also higher compared to capillary blood. According to Bland Altman Plot analysis, lab results were measured at a 95% confidence interval. Conclusion : CRP results from capillary blood showed close correlation with venous blood sampling. At present, venous blood sampling is the preferred method. However, due to difficulty in venous blood sampling, capillary sampling could be considered as an alternative technique for use with children.

목적 : 감염이 있는 환자들을 진단하는데 있어 CRP 검사 결과는 치료의 방향을 결정하는데 많은 도움을 준다. 하지만 영 유아에게 있어서 채혈의 어려움 때문에, 정맥혈 검사를 대채할수 있는 모세혈 채혈이 시도되고 있다. 이번 연구에서는 모세혈 채혈을 통한 CRP 검사 결과가 정맥혈 검사 결과와 차이가 있는지 비교평가 하였다. 방법 : 인하대병원 응급의료센터, 소아청소년과에 내원하거나 입원한 100명(0-14세, 남녀 47 : 53)을 대상으로 정맥혈은 Hitachi 7180$^{TM}$ (Hitachi, Tokyo, Japan), 모세혈은 LC-178CRP$^{TM}$ (Horiba Ltd., Kyoto, Japan, LC-178CRP)장비를 사용해 검사하였다. 통계적 분석방법은 교차분석을 통하여 정맥혈과 모세혈의 CRP 판독차이를 검정하였으며, 회귀분석 및 Bland Altman plot 방법을 통하여 일치도를 평가하였다. 결과 : 교차분석으로 모세혈과 정맥혈 검사의 CRP 판독차이를 검정한 결과 일치도는 90.63%로 유관한 관계성이 있었다(P<0.0001). Bland Altman Plot으로 분석한 결과 95% 신뢰구간의 일치 한계선내에서 측정되었다. 단순회귀모형으로 분석한 결과 기울기($\beta$)는 1.3434였으며, 결정계수($R^2$)는 0.9888로 매우 높은 선형관계를 확인할 수 있었다. 또한 정맥혈에서의 값은 모세혈에서 시행한 값보다 평균적으로 높음을 확인할 수 있었다. 결론 : 모세혈의 CRP는 정맥혈과 매우 높은 상관관계를 보였다. 일반적으로 정맥혈 검사를 하는것이 더 좋겠지만, 채혈이 어려운 경우 LC-178CRP$^{TM}$를 이용한 모세혈에서의 채혈은 정맥혈 검사를 대신할 수 있는 간편한 방법으로 생각된다.

Keywords

References

  1. De Beer FC, Hind CR, Fox KM, Allan RM, Maseri A, Pepys MB. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br. Heart J. 1982;47:239-43. https://doi.org/10.1136/hrt.47.3.239
  2. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in "active"coronary artery disease. Am J Cardiol 1990;65:168-72. https://doi.org/10.1016/0002-9149(90)90079-G
  3. Pepys MB, Hirschfield GM. C-reactive protein: a critical update, J. Clin. Invest. 2003;111:1805-12. https://doi.org/10.1172/JCI200318921
  4. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20: 864-74. https://doi.org/10.1097/00003246-199206000-00025
  5. Hengst JM. The role of C-reactive protein in the evaluation and management of infants with suspected sepsis. Adv Neonatal Care 2003;3:3-13. https://doi.org/10.1053/adnc.2003.50010
  6. Kim MJ, Jin JH, Kwon YS, Jun YH, Kim SK. Comparison of Blood Counts in Capillary and Venous Blood in Children, Korean J Hematol 2009;44:237-43. https://doi.org/10.5045/kjh.2009.44.4.237
  7. Papaevangelou V, Papassotiriou I, Sakou I, Ferentinos G, Liapi G, Kyrka A, et al. Evaluation of a quick test for C-reactive protein in a pediatric emergency department. Scan J Clin Lab Invest 2006;66:717-21. https://doi.org/10.1080/00365510600977869
  8. Woo HY, Park HS. Performance Evaluation of the LC- 175CRPTM Analyzer for Determination of Complete Blood Cell Count and Quantitative C-Reactive Protein. Korean J Lab Med 2005;25:1-6.
  9. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8: 135-60. https://doi.org/10.1191/096228099673819272
  10. Clyne B, Olshaker JS. The C-reactive protein. J Emerg Med 1999;17:1019-25. https://doi.org/10.1016/S0736-4679(99)00135-3
  11. Cars O, Molstad S, Melander A. Variation in antibiotic use in the European Union. Lancet 2001;357:1851-3. https://doi.org/10.1016/S0140-6736(00)04972-2
  12. Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 1983;34:141-212. https://doi.org/10.1016/S0065-2776(08)60379-X
  13. Takemura Y, Ishida H, Inoue Y. Utilization of common inflammatory markers in new, symptomatic, primary care outpatients based on their cost-effectiveness. Clin Chem Lab Med 2003;41:668-74. https://doi.org/10.1515/CCLM.2003.101
  14. Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 1993;91: 1351-7. https://doi.org/10.1172/JCI116336
  15. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448-54. https://doi.org/10.1056/NEJM199902113400607
  16. Zimmerman MA, Selzman CH, Cothren C, Sorensen AC, Raeburn CD, Harken AH. Diagnostic implications of C-reactive protein. Arch Surg 2003;138:220-4. https://doi.org/10.1001/archsurg.138.2.220
  17. Unkila-Kallio L, Kallio MJ, Eskola J, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in acute hematogenous osteomyelitis of children. Pediatrics 1994;93:59-62.
  18. Esposito S, Tremolati E, Begliatti E, Bosis S, Gualtieri L, Principi N. Evaluation of a rapid bedside test for the quantitative determination of C-reactive protein. Clin Chem Lab Med 2005;43:438-40. https://doi.org/10.1515/CCLM.2005.077
  19. Roberts WL, Schwarz EL, Ayanian S, Rifai N. Performance characteristics of a point of care C-reactive protein assay. Clin Chem Acta 2001;314:255-9. https://doi.org/10.1016/S0009-8981(01)00657-X
  20. Tarkkinen P, Palenius T, Lovgren T. Ultrarapid, ultrasensitive onestep kinetic immunoassay for C-reactive protein (CRP) in whole blood samples: measurement of the entire CRP concentration range with a single sample dilution. Clin Chem 2002;48:269-77.