DOI QR코드

DOI QR Code

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Han, Sang-Beom (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Hyun-Hwi (Pohang Accelerator Laboratory) ;
  • Park, Kyung-Won (Department of Chemical and Environmental Engineering, Soongsil University)
  • 발행 : 2010.02.27

초록

In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

키워드

참고문헌

  1. G. P. Pollack and D. Trivich, ‘Photoelectric properties of cuprous oxide’ J. Appl. Phys., 46, 163 (1975). https://doi.org/10.1063/1.321312
  2. R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, and J.A. Switzer, ‘Epitaxial Electrodeposition of High-Aspect-Ratio $Cu_2O$ (110) Nanostructures on InP(111)’ Chem. Mater., 17, 725 (2005). https://doi.org/10.1021/cm048296l
  3. A. O. Musa, T. Akomolafe, and M. J. Carter, ‘Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties’ Sol. Energ. Mat. Sol. C., 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X
  4. H. Xu, W. Wang, and W. Zhu, ‘Shape Evolution and Size- Controllable Synthesis of Cu2O Octahedra and Their Morphology- Dependent Photocatalytic Properties’ J. Phys. Chem. B, 110, 13829 (2006). https://doi.org/10.1021/jp061934y
  5. S. T. Shishiyanu, T. S. Shisiyanu, and O. I. Lupan, ‘Novel $NO_2$ gas sensor based on cuprous oxide thin films’ Sensors Actuators B, 113, 468 (2006). https://doi.org/10.1016/j.snb.2005.03.061
  6. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, ‘Nano-sized transition-metal oxides as negativeelectrode materials forlithium-ion batteries’ Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  7. C. Q. Zhang, J.P. Tu, X. H. Huang, Y. F. Yuan, X. T. Chen, and F. Mao, ‘Preparation and electrochemical performances of cubic shape $Cu_2O$ as anode material for lithium ion batteries’ J. Alloy Comd., 441, 52 (2007). https://doi.org/10.1016/j.jallcom.2006.09.106
  8. P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, ‘Photoelectrochemistry of Electrodeposited $Cu_2O$’ J. Electro1hem. Soc., 147, 486 (2000). https://doi.org/10.1149/1.1393221
  9. A. P. Alivisatos, ‘Semiconductor Clusters, Nanocrystals, and Quantum Dots’ Science, 271, 933 (1996). https://doi.org/10.1126/science.271.5251.933
  10. M. J. Siegfried and K.-S. Choi, ‘Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth’ Angew. Chem. Int. Ed., 44, 3218 (2005). https://doi.org/10.1002/anie.200463018
  11. A. L. Daltina, A. Addadb, and J. P. Choparta, ‘Potentiostatic deposition and characterization of cuprous oxide films and nanowires’ J. Cryst. Growth, 282, 414 (2005). https://doi.org/10.1016/j.jcrysgro.2005.05.053
  12. B. Balamurugan and B. R. Mehta, ‘Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation’ Thin Solid Films, 396, 90 (2001). https://doi.org/10.1016/S0040-6090(01)01216-0
  13. L. Gou and C. J. Murphy, ‘Solution-Phase Synthesis of Cu2O Nanocubes’ Nano Lett., 3, 231 (2003). https://doi.org/10.1021/nl0258776
  14. Z. Wu, M. Shao, W. Zhang, and Y. Ni, ‘Large-scale synthesis of uniform Cu2O stellar crystals via microwaveassisted route’ J. Cryst. Growth, 260, 490 (2004). https://doi.org/10.1016/j.jcrysgro.2003.09.022
  15. Z. Z. Chen, E. W. Shi, Y.Q. Zheng, W. J. Li, B. Xiao, and J. Y. Zhuang, ‘Growth of hex-pod-like $Cu_2O$ whisker under hydrothermal conditions’ J. Cryst. Growth, 249, 294 (2003). https://doi.org/10.1016/S0022-0248(02)02154-1
  16. P. Taneja, R. Banerjee, and P. Ayyub, ‘Structure and properties of nanocrystalline Ag and $Cu_2O$ synthesized by high pressure sputtering’ Scr. Mater., 44, 1915 (2001). https://doi.org/10.1016/S1359-6462(01)00808-9
  17. P. R. Markworth, X. Liu, J.Y. Dai, W. Fan, T.J. Marks, and P. P. H. Chang, ‘Coherent island formation of $Cu_2O$, films grown by chemical vapor deposition on MgO(110)’ J. Mater. Res., 16, 2408 (2001). https://doi.org/10.1557/JMR.2001.0330
  18. M. C. Tsai, T. K. Yeh, and C. H. Tsai, ‘An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation’ Electrochem. Commun., 8, 1445 (2006). https://doi.org/10.1016/j.elecom.2006.07.003
  19. X. Chen, N. Li, K. Eckhard, L. Stoica, W. Xia, J. Assmann, M. Muhler, and W. Schuhmann, Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes’ Electrochem. Commun., 9, 1348 (2007). https://doi.org/10.1016/j.elecom.2007.01.034
  20. M. Sun, G. Zangari, M. Shamsuzzoha, and R.M. Metzger, ‘Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite’ Appl. Phys. Lett., 78, 2964 (2001). https://doi.org/10.1063/1.1370986
  21. C. D. Wagner, W. M. Riggs, L. E. Davis, J. E. Moulder, and G. E. Muilenber, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation Physical Electronics Division, USA, 1979.
  22. A. O. Musa, T. Akomolafe, and M. J. Carter, ‘Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties’ Sol. Energy Mater. Sol. Cells, 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X
  23. T. Gao, G. Meng, Y. Wang, S. Sun, and L. Zhang, ‘Electrochemical synthesis of copper nanowires’ J. Phys. Condens. Matter., 14, 355 (2002). https://doi.org/10.1088/0953-8984/14/3/306
  24. J. Xu and D. Xue, ‘Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals’ Acta Mater., 55, 2397 (2007). https://doi.org/10.1016/j.actamat.2006.11.032

피인용 문헌

  1. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films vol.2013, 2013, https://doi.org/10.1155/2013/271545