DOI QR코드

DOI QR Code

리튬 이차전지의 흑연 음극 표면피막 생성기구와 전해질과의 상관성

Mechanism of Surface Film Formation on Graphite Negative Electrodes and Its Correlation with Electrolyte in Lithium Secondary Batteries

  • 정순기 (순천향대학교 나노화학공학과)
  • Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
  • 발행 : 2010.02.27

초록

초기 충전 과정에서 흑연 음극에 생성되는 표면피막은 리튬 이차전지의 중요한 구성 요소로 전지 반응은 표면피막의 본질에 크게 영향을 받는다. 따라서 표면피막의 물리화학적 성질을 이해하는 것은 매우 중요하다. 한편, 표면피막의 형성 반응은 흑연/전해질 계면에서 진행하는 매우 복잡한 계면 현상이며, 표면피막은 반응성이 높고 공기 중에서 불안정하기 때문에 리튬 이차전지의 전극 표면을 연구하는데 있어서 in-situ 실험 기술은 매우 중요하다. 이와 같은 점에서 전위가 제어된 상태에서 다양한 전기화학 반응이 진행하는 전극/용액 계면을 직접 관찰할 수 있는 전기화학적 원자간력 현미경(Electrochemical Atomic Force Microscopy, ECAFM)은 매우 유용한 도구이다. 본 총설에서는 흑연 음극에 생성되는 표면피막의 본질적 이해에 중점을 두어 표면피막의 생성기구 및 전해질과의 상관성에 관하여 in-situ ECAFM 분석 결과를 중심으로 하여 정리하였다.

The surface film, which is formed on graphite negative electrodes during the initial charging, is a key component in lithium secondary batteries. The battery reactions are strongly affected by the nature of the surface film. It is thus very important to understand the physicochemical properties of the surface film. On the other hand, the surface film formation is a very complicated interfacial phenomenon occurring at the graphite/electrolyte interface. In studies on electrode surfaces in lithium secondary batteries, in-situ experimental techniques are very important because the surface film is highly reactive and unstable in the air. In this respect electrochemical atomic force microscopy (ECAFM) is a useful tool for direct visualizing electrode/solution interfaces at which various electrochemical reactions occur under potential control. In the present review, mechanism of surface film formation and its correlation with electrolyte are summarized on the basis of in-situ ECAFM studies for understanding of the nature of the surface film on graphite negative electrodes.

키워드

참고문헌

  1. D. Linden, “Handbook of Batteries”, McGraw-Hill, New York (1995).
  2. M. Winter and J. O. Besenhard, M. E. Spahr, and P. Novak, ‘Insertion electrode materials for rechargeable lithium batteries’ Adv. Mater., 10, 725 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  3. J. R. Dahn, ‘Phase-diagram of $Li_xC_6$’ Phys. Rev., B44, 9170 (1991).
  4. T. Ohzuku, Y. Iwakoshi, and K. Sawai, ‘Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell’ J. Electrochem. Soc., 140, 2490 (1993). https://doi.org/10.1149/1.2220849
  5. Z. Jiang, M. Alamgir, and K. M. Abraham, ‘The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells’ J. Electrochem. Soc., 142, 333 (1995). https://doi.org/10.1149/1.2043997
  6. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘In situ Raman study on electrochemical Li intercalation into graphite’ J. Electrochem. Soc., 142, 20 (1995). https://doi.org/10.1149/1.2043869
  7. A. Herold, ‘Recherches sur les composes dinsertion du graphite’ Bull. Soc. Chim. Fr., 187, 999 (1955).
  8. R. Fong, U. von Sacken, and J. R. Dahn, ‘Studies of lithium intercalation into carbons using nonaqueous electrochemical cells’ J. Electrochem. Soc., 137, 2009 (1990). https://doi.org/10.1149/1.2086855
  9. 0E. Peled, “Handbook of Battery Materials”, 419, Wiley-VCH, Weinheim (1999).
  10. E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
  11. R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of $Li_xC_6$’ J. Power Sources, 43-44, 39 (1993).
  12. T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 221 (1995). https://doi.org/10.1016/0022-0728(95)03907-X
  13. A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997). https://doi.org/10.1016/S0378-7753(96)02556-6
  14. D. Bar-Tow, E. Peled, and L. Burstein, ‘A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries’ J. Electrochem. Soc., 146, 824 (1999). https://doi.org/10.1149/1.1391688
  15. E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, ‘Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies’ J. Power Sources, 97-98, 52 (2001). https://doi.org/10.1016/S0378-7753(01)00505-5
  16. K. Edstrom, M. Herstedt, and D. P. Abraham, ‘A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries’ J. Power Sources, 153, 380 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.062
  17. O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli ‘Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems’ J. Power Sources, 43-44, 47 (1993).
  18. Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, ‘The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition’ Electrochim. Acta, 39, 2559 (1994). https://doi.org/10.1016/0013-4686(94)00221-5
  19. D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, ‘The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair Type Batteries’ J. Electrochem. Soc., 141, 603 (1994). https://doi.org/10.1149/1.2054777
  20. D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, ‘The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries’ J. Electrochem. Soc., 142, 2882 (1995). https://doi.org/10.1149/1.2048659
  21. Y. Ein-Eli, S. R. Thomas, V. Koch, D. Aurbach, B. Markovsky, and A. Schechter, ‘Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries’ J. Electrochem. Soc., 143, L273 (1996). https://doi.org/10.1149/1.1837293
  22. D. Aurbach, B. Markovsky, A. Schechter, and E. Ein-Eli, ‘A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures’ J. Electrochem. Soc., 143, 3809 (1996). https://doi.org/10.1149/1.1837300
  23. Y. Ein-Eli, S. F. McDevitt, D. Aurbach, B. Markovsky, and A. Schechter, ‘Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes’ J. Electrochem. Soc., 144, L180 (1997). https://doi.org/10.1149/1.1837792
  24. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chuid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, ‘Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems’ J. Power Sources, 68, 91 (1997). https://doi.org/10.1016/S0378-7753(97)02575-5
  25. D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, ‘Failure and stabilization mechanisms of graphite electrodes’ J. Phys. Chem. B, 101, 2195 (1997). https://doi.org/10.1021/jp962815t
  26. D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, and G. Salitra, ‘Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides’ J. Electrochem. Soc., 145, 3024 (1998). https://doi.org/10.1149/1.1838758
  27. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, ‘On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries’ Electrochim. Acta, 45, 67 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2
  28. D. Aurbach, ‘Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries’ J. Power Sources, 89, 206 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
  29. D. Aurbach, J. S. Gnanaraj, M. D. Levi, E. A. Levi, J. E. Fischer, and A. Claye, ‘On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes’ J. Power Sources, 97-98, 92 (2001). https://doi.org/10.1016/S0378-7753(01)00594-8
  30. C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, ‘Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries’ J. Power Sources, 68, 277 (1997). https://doi.org/10.1016/S0378-7753(96)02629-8
  31. E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, ‘An advanced tool for the selection of electrolyte components for rechargeable lithium batteries’ J. Electrochem. Soc., 145, 3482 (1998). https://doi.org/10.1149/1.1838831
  32. Z. Ogumi, A. Sano, M. Inaba, and T. Abe, ‘Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode’ J. Power Sources, 97-98, 156 (2001). https://doi.org/10.1016/S0378-7753(01)00529-8
  33. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, ‘Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes’ J. Power Sources, 54, 228 (1995). https://doi.org/10.1016/0378-7753(94)02073-C
  34. M. Winter, G. H. Wrodingg, J. O. Besenhard, W. Biberacher, and P. Novak, ‘Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes’ J. Electrochem. Soc., 147, 2427 (2000). https://doi.org/10.1149/1.1393548
  35. M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution’ Langmuir, 12, 1535 (1996). https://doi.org/10.1021/la950848e
  36. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi, ‘Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate’ J. Power Sources, 68, 221 (1997). https://doi.org/10.1016/S0378-7753(96)02555-4
  37. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution’ Electrochim. Acta, 45, 99 (1999). https://doi.org/10.1016/S0013-4686(99)00196-6
  38. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study of well-defined graphite/electrolyte interface polarized in propylene carbonate solution containing 12-crown-4’ Electrochemistry, 67, 1153 (1999).
  39. Z. Ogumi, S.-K. Jeong, M Inaba, and T. Abe, ‘Surface film formation on graphite negative electrodes in rechargeable lithium batteries’ Macromol. Symp., 156, 195 (2000). https://doi.org/10.1002/1521-3900(200007)156:1<195::AID-MASY195>3.0.CO;2-F
  40. S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001). https://doi.org/10.1149/1.1387981
  41. S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions’ Langmuir, 17, 8281 (2001). https://doi.org/10.1021/la015553h
  42. Z. Ogumi, M. Inaba, T. Abe, and S.-K. Jeong, “Studies in Surface Science and Catalysis”, 929, Elsevier Science B.V., Amsterdam (2001).
  43. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions’ Electrochim. Acta, 47, 1975 (2002). https://doi.org/10.1016/S0013-4686(02)00099-3
  44. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries’ J. Power Sources, 119-121, 555 (2003). https://doi.org/10.1016/S0378-7753(03)00288-X
  45. W. Huang and R. Frech, ‘In situ Raman studies of graphite surface structures during lithium electrochemical intercalation’ J. Electrochem. Soc., 145, 765 (1998). https://doi.org/10.1149/1.1838343
  46. S.-K. Jeong, ‘AFM study on surface film formation on a graphite negative electrode in a $LiPF_6$-based non-aqueous solution’ J. Academia-Industrial Technology, 7, 1313 (2006).
  47. H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000). https://doi.org/10.1016/S0304-3991(99)00139-4
  48. M. Morita, Y. Asai, N. Yoshimoto, and M. Ishikawa, ‘A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts’ J. Chem. Soc., Faraday Trans., 94, 3451 (1998). https://doi.org/10.1039/a806278a
  49. B. Klassen, R. Aroca, M. Nazri, and G. A. Nazri, ‘Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries’ J Phys. Chem. B, 102, 4795 (1998). https://doi.org/10.1021/jp973099d
  50. H. Yoshida, T. Fukunaga, T. Hazama, M. Mizutani, and M. Yamachi, ‘Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging’ J. Power Sources, 68, 311 (1997). https://doi.org/10.1016/S0378-7753(97)02635-9
  51. S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, ‘Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions’ J. Power Sources, 68, 59 (1997). https://doi.org/10.1016/S0378-7753(97)02619-0
  52. Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film’ Langmuir, 25, 12766 (2009). https://doi.org/10.1021/la901829v
  53. F. Sagane, T. Abe, and Z. Ogumi, ‘$Li^+$-ion Transfer through the interface between $Li^+$-ion conductive ceramic electrolyte and $Li^+$-ion-concentrated propylene carbonate solution’ J. Physical Chemistry C, 113, 20135 (2009). https://doi.org/10.1021/jp908623c
  54. Z. Ogumi, T. Abe, T. Fukutsuka, S. Yamate, and Y. Iriyama, ‘Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte’ J. Power Sources, 127, 72 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.009
  55. T. Saeki, H. Ohtani, A. Ito, K. Tanaka, and O. Hatozaki, “Extended Abstracts of the 50th Battery Symposium”, 169, Kyoto, Japan (2009).
  56. Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Physical Chemistry C, 113, 8948 (2009). https://doi.org/10.1021/jp9022458
  57. K. Xu, ‘Charge-transfer process at graphite/electrolyte interface and the solvation sheath structure of $Li^+$ in nonaqueous electrolytes’ J. Electrochem. Soc., 154, A162 (2007). https://doi.org/10.1149/1.2409866
  58. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh, and K. Zaghib. ‘Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance’ J. Power Sources, 195, 845 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.056
  59. A. Kanetomo, M. Egashira, N. Yoshimoto, and M. Morita, “Extended Abstracts of the 50th Battery Symposium”, 162, Kyoto, Japan (2009).
  60. H. Nakagawa a, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, ‘Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells’ J. Power Sources, 174, 1021 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.133
  61. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions’ Electrochemical and Solid-State Letters, 6, A13 (2003). https://doi.org/10.1149/1.1526781
  62. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.065
  63. S.-K. Jeong, H. Seo, D. Kim, H. Han, J. Kim, Y. Lee, Y. Iriyama, T, Abe, and Z, Ogumi, ‘Suppression of dendritic lithium formation by using concentrated electrolyte solutions’ Electrochemistry Communications, 10, 635 (2008). https://doi.org/10.1016/j.elecom.2008.02.006
  64. A. N. Dey and B. P. Sullivan, ‘The electrochemical decomposition of propylene carbonate on graphite’ J. Electrochem. Soc., 117, 222 (1970). https://doi.org/10.1149/1.2407470
  65. J. O. Besenhard and H. P. Fritz, ‘Cathodic reduction of graphite in organic solutions of alkali and $NR^{4+}$ salts’ J. Electroanal. Chem., 53, 329 (1974). https://doi.org/10.1016/S0022-0728(74)80146-4
  66. G. Eichinger, ‘Cathodic decomposition reactions of propylene carbonate’ J. Electroanal. Chem., 74, 183 (1976). https://doi.org/10.1016/S0022-0728(76)80234-3
  67. M. Arakawa and J. Yamaki, ‘The cathodic decomposition of propylene carbonate in lithium batteries’ J. Electroanal. Chem., 219, 273 (1987). https://doi.org/10.1016/0022-0728(87)85045-3
  68. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode at elevated temperatures’ Electrochemistry, 71, 1132 (2003).
  69. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, ‘Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures’ Langmuir, 20, 1348 (2004). https://doi.org/10.1021/la035857z
  70. M. Suga, Y. Konyuba, S. Iwamatsu, Y. Watanabe, J. Osuga, H. Nishiyama, T. Ogura, and C. Sato, “Extended Abstracts of the 50th Battery Symposium”, 265, Kyoto, Japan (2009).

피인용 문헌

  1. Electrochemical performances of lithium and sodium ion batteries based on carbon materials 2017, https://doi.org/10.1016/j.jiec.2017.12.036