Reliability Assessment of Tunnel Support Systems Using a Probability-Based Method

확률론적 기법을 이용한 터널 지보시스템의 신뢰성 평가

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부) ;
  • 송원경 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부)
  • Published : 2010.02.28

Abstract

The present study developed a program which can assess the reliability of tunnel support systems based on a probability-based method. The developed program uses FLAC2D as a solver, and can automatically execute all the processes, associated with numerical and probabilistic analysis. Since a numerical analysis, which models the ground, requires a significant calculation time, it is actually impossible to apply simulation-based methods to probabilistic assessment on the reliability of tunnel support systems. Therefore, the present study used a point estimate method, which is efficient for probabilistic analysis since the method can significantly reduce the number of samples when compared with the simulation-based method. The developed program was applied to a tunnel project, and the results were compared with those through a deterministic approach. From the comparison, it was identified that a probabilistic approach can quantitatively assess the reliability of tunnel support systems based on probability of failure and can be used as a tool for decision making in tunnel support designs.

본 연구에서는 확률론적 기법을 토대로 터널 지보시스템의 신뢰성을 평가할 수 있는 프로그램을 개발하였다. 개발된 프로그램은 솔버로서 FLAC2D를 사용하며 수치해석과 확률론적 해석의 전 과정을 자동적으로 처리할 수 있다. 지반을 모델링한 수치해석시 상당한 계산시간이 소요되므로 시뮬레이션 기법을 적용하여 터널 지보시스템의 신뢰성을 확률론적으로 평가하는 것은 현실적으로 불가능하다. 따라서 본 연구에서는 샘플의 수를 시뮬레이션 기법에 비해 상당히 줄일 수 있어 확률론적 해석을 하는 데 효율적인 점추정법을 사용하였다. 본 연구에서 개발한 프로그램을 터널 프로젝트에 적용하여 결정론적 접근법에 의한 결과와 비교 분석하였다. 이로부터 확률론적 접근법은 파괴확률을 토대로 터널 지보시스템의 신뢰성을 정량적으로 평가할 수 있고 터널 지보설계시 의사결정의 도구로서 활용될 수 있다는 것을 확인하였다.

Keywords

References

  1. 김형배, 이승호, 2002, 실용적인 확률론적 사면안정 해석기법 개발, 한국지반공학회논문집 18.5, 271-280.
  2. 박혁진, 2002, 점추정법을 이용한 평면파괴의 파괴확률 산정, 터널과 지하공간(한국암반공학회지) 12.3, 189-197.
  3. 장연수, 오승현, 김종수, 2002, 암반사면의 평면파괴에 대한 신뢰성해석, 한국지반공학회논문집 18.4, 119-126.
  4. 한국철도시설공단, 2003a, 경전선 삼랑진-진주 제3공구 (진영-창원간) 복선전철 건설공사 각종계산서 터널분야.
  5. 한국철도시설공단, 2003b, 경전선 삼랑진-진주 제3공구(진영-창원간) 복선전철 건설공사 지반조사 보고서.
  6. 한국콘크리트학회, 2007, 콘크리트구조설계기준, 기문당, 서울.
  7. Barbosa M.R., D.V. Morris and S.K. Sarma, 1989, Factor of safety and probability of failure of rockfill embankments, Geotechnique 39.3, 417-483.
  8. Bucher C., D. Hintze and D. Roos, 2000, Advanced analysis of structural reliability using commercial FEcodes, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, CD-ROM.
  9. Christian J.T., C.C. Ladd and G.B. Baecher, 1994, Reliability applied to slope stability analysis, Journal of Geotechnical Engineering 120.12, 2180-2207. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)
  10. Ellingwood B.R., 2001, Earthquake risk assessment of building structures, Reliability Engineering and System Safety 74.3, 251-262. https://doi.org/10.1016/S0951-8320(01)00105-3
  11. Geist E.L. and T. Parsons, 2006, Probabilistic analysis of Tsunami hazards, Natural Hazards 37.3, 277-314. https://doi.org/10.1007/s11069-005-4646-z
  12. Griffiths D.V., G.A. Fenton and C.B. Lemons, 2002, Probabilistic analysis of underground pillar stability, International Journal for Numerical and Analytical Methods in Geomechanics 26.8, 775-791. https://doi.org/10.1002/nag.222
  13. Harr M.E., 1996, Reliability-based design in civil engineering, McGraw-Hill, New York.
  14. Hwang J.H., C.H. Chen and C.H. Juang, 2005, Liquefaction hazard analysis: a fully probabilistic method, Proceedings of Sessions of the Geo-Frontiers 2005 Congress, CD-ROM.
  15. Juang C.H., D.V. Rosowsky and W.H. Tang, 1999, Reliability-based method for assessing liquefaction potential of soils, Journal of Geotechnical and Geoenvironmental Engineering 125.8, 684-689. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
  16. Laso E., M.S.G. Lera and E. Alarcon, 1995, A level II reliability approach to tunnel support design, Applied Mathmatical Modelling 19.6, 371-382. https://doi.org/10.1016/0307-904X(95)00019-G
  17. Li H.Z. and B.K. Low, 2010, Reliability analysis of circular tunnel under hydrostatic stress field, Computers and Geotechnics 37.1-2, 50-58. https://doi.org/10.1016/j.compgeo.2009.07.005
  18. Oreste P., 2005, A probabilistic design approach for tunnel supports, Computers and Geotechnics 32.7, 520-534. https://doi.org/10.1016/j.compgeo.2005.09.003
  19. Preziosi M.C., 2008, Probabilisticc assessment of small earthfill dams, Dams and Reservoirs 18.1, 27-30. https://doi.org/10.1680/dare.2008.18.1.27
  20. Priest S.D. and E.T. Brown, 1983, Probabilistic stability analysis of variable rock slopes, Transactions of the Institution of Mining and Metallurgy, Section A, Vol 92, 1-12.
  21. Rosenblueth E., 1975, Point estimates for probability moments, Proceedings of the National Academy of Sciences USA 72.10, 3812-3814. https://doi.org/10.1073/pnas.72.10.3812
  22. Schweiger H.F., R. Thurner and R. Pottler, 2001, Reliability analysis in geotechnics with deterministic finite elements, The International Journal of Geomechanics 1.4, 389-413. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:4(389)
  23. Singh V.P., K.J. Sharad and A.K. Tyagi, 2007, Risk and reliability analysis : a handbook for civil and environmental engineers, ASCE Press, Virginia, 674p.
  24. US Department of the Army, 1997, Introduction to probability and reliability methods for use in geotechnical engineering, US Department of the Army Report, ETL 1110-2-547.
  25. Xu B. and B.K. Low, 2006, Probabilistic stability analyses of embankments based on finite-element method, Journal of Geotechnical and Geoenvironmental Engineering 132.11, 1444-1454. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1444)
  26. You K., Y. Park and J.S. Lee, 2005, Risk analysis for determination of a tunnel support pattern, Tunnelling and Underground Space Technology 20.5, 479-486. https://doi.org/10.1016/j.tust.2005.03.002