Abstract
This paper applies Bayesian Markov inferred localization techniques for determining ZigBee mobile device's position. To evaluate its accuracy, we compare it with conventional technique, map-based localization. While the map-based localization technique referring to database of predefined locations and their RSSI data, the Bayesian Markov inferred localization is influenced by changes of time, direction and distance. All determinations are drawn from the estimation of Received Signal Strength (RSS) using ZigBee modules. Our results show the relationship between RSSI and distance in indoor ZigBee environment and higher localization accuracy of Bayesian Markov localization technique. We conclude that map-based localization is not suitable for flexible changes in indoors because of its predefined condition setup and lower accuracy comparing to distance-based Markov Chain inference localization system.
본 논문은 실내 위치 인식을 위하여 ZigBee 이동 장치의 위치를 측정하였으며 Bayesian Markov 위치 추론 기법을 적용하였다. 정확도 분석을 위해 기존의 지도 기반의 위치 인식 기법과 비교하였는데 이 기법은 이미 지정된 위치에서의 RSSI 데이터를 데이터베이스화하여 참조하도록 하는 반면 Bayesian Markov 추론 방법은 시간, 방향, 거리의 변화에 영향을 받았다. 이 두가지 방법에 따른 측정은 지그비 모듈을 사용하여 RSSI를 측정한 결과를 토대로 이루어졌으며 그 결과 실내에서의 RSSI와 거리와의 관계로 접근하는 것이 바람직하며 Bayesian Markov에 의한 분석결과 기존의 지도 기반 위치 인식 기법에 비하여 높은 정확도를 보여주었다. 결과적으로 기존의 지도 기반 위치 인식 기법은 사전에 환경 요인에 대한 설정을 해주어야 하고, 보다 낮은 정확도를 가지고 있으므로 환경 변화가 잦은 실내에서는 부적합하다고 생각된다.